Advertisement

Groupoid Models for the C*-Algebra of Labelled Spaces

  • Giuliano Boava
  • Gilles G. de CastroEmail author
  • Fernando de L. Mortari
Article
  • 8 Downloads

Abstract

We define a groupoid from a labelled space and show that it is isomorphic to the tight groupoid arising from an inverse semigroup associated with the labelled space. We then define a local homeomorphism on the tight spectrum that is a generalization of the shift map for graphs, and show that the defined groupoid is isomorphic to the Renault-Deaconu groupoid for this local homeomorphism. Finally, we show that the C*-algebra of this groupoid is isomorphic to the C*-algebra of the labelled space as introduced by Bates and Pask.

Keywords

C*-algebra Labelled space Groupoid 

Mathematics Subject Classification

Primary 46L55 Secondary 20M18 05C20 05C78 

Notes

References

  1. Bates, T., Carlsen, T.M., Pask, D.: \(C^*\)-algebras of labelled graphs III–\(K\)-theory computations. Ergodic Theory Dyn. Syst. 37(2), 337–368 (2017)MathSciNetCrossRefGoogle Scholar
  2. Bates, T., Pask, D.: \(C^*\)-algebras of labelled graphs. J. Oper. Theory 57(1), 207–226 (2007)MathSciNetzbMATHGoogle Scholar
  3. Bates, T., Pask, D.: \(C^*\)-algebras of labelled graphs. II. Simplicity results. Math. Scand. 104(2), 249–274 (2009)MathSciNetCrossRefGoogle Scholar
  4. Boava, G., de Castro, G.G., Mortari, F.de L.: Inverse semigroups associated with labelled spaces and their tight spectra. Semigroup Forum 94(3), 582–609 (2017)MathSciNetCrossRefGoogle Scholar
  5. Boava, G., de Castro, G.G., Mortari, FdL: C*-algebras of labelled spaces and their diagonal C*-subalgebras. J. Math. Anal. Appl. 456(1), 69–98 (2017)MathSciNetCrossRefGoogle Scholar
  6. Carlsen, T.M.: Cuntz–Pimsner \(C^*\)-algebras associated with subshifts. Int. J. Math. 19(1), 47–70 (2008)MathSciNetCrossRefGoogle Scholar
  7. Carlsen, T.M., Matsumoto, K.: Some remarks on the \(C^*\)-algebras associated with subshifts. Math. Scand. 95(1), 145–160 (2004)MathSciNetCrossRefGoogle Scholar
  8. Carlsen, T.M., Ortega, E., Pardo, E.: \(C^*\)-algebras associated to Boolean dynamical systems. J. Math. Anal. Appl. 450(1), 727–768 (2017)MathSciNetCrossRefGoogle Scholar
  9. Cuntz, J.: Simple \(C^*\)-algebras generated by isometries. Commun. Math. Phys. 57(2), 173–185 (1977)MathSciNetCrossRefGoogle Scholar
  10. Cuntz, J., Krieger, W.: A class of \(C^{\ast } \)-algebras and topological Markov chains. Invent. Math. 56(3), 251–268 (1980)MathSciNetCrossRefGoogle Scholar
  11. Deaconu, V.: Groupoids associated with endomorphisms. Trans. Am. Math. Soc. 347(5), 1779–1786 (1995)MathSciNetCrossRefGoogle Scholar
  12. Exel, R.: Inverse semigroups and combinatorial \(C^\ast \)-algebras. Bull. Braz. Math. Soc. (N.S.) 39(2), 191–313 (2008)MathSciNetCrossRefGoogle Scholar
  13. Exel, R., Laca, M.: Cuntz-Krieger algebras for infinite matrices. J. Reine Angew. Math. 512, 119–172 (1999)MathSciNetCrossRefGoogle Scholar
  14. Farthing, C., Muhly, P.S., Yeend, T.: Higher-rank graph \(C^*\)-algebras: an inverse semigroup and groupoid approach. Semigroup Forum 71(2), 159–187 (2005)MathSciNetCrossRefGoogle Scholar
  15. Kumjian, A., Pask, D., Raeburn, I., Renault, J.: Graphs, groupoids, and Cuntz-Krieger algebras. J. Funct. Anal. 144(2), 505–541 (1997)MathSciNetCrossRefGoogle Scholar
  16. Lawson, M.V.: Non-commutative Stone duality: inverse semigroups, topological groupoids and \(C^\ast \)-algebras. Int. J. Algebra Comput. 22(6), 1250058 (2012)MathSciNetCrossRefGoogle Scholar
  17. Marrero, A.E., Muhly, P.S.: Groupoid and inverse semigroup presentations of ultragraph \(C^*\)-algebras. Semigroup Forum 77(3), 399–422 (2008)MathSciNetCrossRefGoogle Scholar
  18. Paterson, A.L.T.: Groupoids, inverse semigroups, and their operator algebras, volume 170 of Progress in Mathematics. Birkhäuser Boston Inc, Boston (1999)CrossRefGoogle Scholar
  19. Paterson, A.L.T.: Graph inverse semigroups, groupoids and their \(C^\ast \)-algebras. J. Oper. Theory 48(3, suppl), 645–662 (2002)MathSciNetzbMATHGoogle Scholar
  20. Raeburn, I: Graph algebras, volume 103 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2005)Google Scholar
  21. Renault, J.: A groupoid approach to \(C^{\ast } \)-algebras, volume 793 of Lecture Notes in Mathematics. Springer, Berlin (1980)CrossRefGoogle Scholar
  22. Renault, J: Cuntz-like algebras. In Operator theoretical methods (Timişoara, 1998), pages 371–386. Theta Found., Bucharest (2000)Google Scholar
  23. Stone, M.H.: Postulates for Boolean algebras and generalized boolean algebras. Am. J. Math. 57(4), 703–732 (1935)MathSciNetCrossRefGoogle Scholar
  24. Thomsen, K.: Semi-étale groupoids and applications. Ann. Inst. Fourier (Grenoble) 60(3), 759–800 (2010)MathSciNetCrossRefGoogle Scholar
  25. Tomforde, M.: A unified approach to Exel-Laca algebras and \(C^\ast \)-algebras associated to graphs. J. Oper. Theory 50(2), 345–368 (2003)MathSciNetzbMATHGoogle Scholar
  26. Webster, S.B.G.: The path space of a directed graph. Proc. Am. Math. Soc. 142(1), 213–225 (2014)MathSciNetCrossRefGoogle Scholar
  27. Yeend, T.: Groupoid models for the \(C^*\)-algebras of topological higher-rank graphs. J. Oper. Theory 57(1), 95–120 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations