Advertisement

The Product Formula and Evolution Families of Nonexpansive Mappings

  • Luis Benítez-Babilonia
  • Nancy LópezEmail author
  • Raúl Felipe
Article
  • 65 Downloads

Abstract

In this work we obtain a product formula type for a two-parameters commuting family of nonexpansive mappings on \({\mathbb {D}}\). This is established by following the techniques used by Simeon Reich and David Shoikhet in the study of one-parameter semigroups of holomorphic and nonexpansive self-mappings in \({\mathbb {D}}\). Also, we stablish such a formula for the family of non-linear resolvent of a strongly \(\rho \)-monotone functions on \({\mathbb {D}}\) and its relation with evolution families of nonexpansive mappings on \({\mathbb {D}}\). It is worthy mentioning that the product formula is linked with semigroup of linear and nonlinear operators. Also it is associated with the study of vector fields and flows, but in the literature it is established a product formula for time independent flow.

Keywords

Product formula Evolution families Nonlinear resolvent \(\rho \)-monotone vector fields 

Mathematics Subject Classification

47H09 30L99 30J99 37C10 37L05 

Notes

Acknowledgements

This research is supported by the Research Project (Acta no. 112015), and by the Universidad de Antioquia under SUI Research Project Dos problemas relacionados con el Control en espacios de Hilbert y en el espacio \(N_{\rho }({\mathbb {D}})\) (Acta no. 701, 2015-03-11). Raúl Felipe thanks support from CONACYT, grant 222870.

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds: Tensor Analysis, and Applications, Applied Mathematical Sciences 75, 2nd edn. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  2. Arosio, L., Bracci, F.: Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds. Anal. Math. Phys. 1(4), 337–350 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Benítez-Babilonia, L., Felipe, R.: Infinitesimal generators of evolution families of nonexpansive mappings. Bull. Braz. Math. Soc. New Ser. 47, 1097–1118 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Benítez-Babilonia, L., Contreras, M.D., Díaz-Madrigal, S., Felipe, R.: Evolution families of nonexpansive mappings. J. Nonlinear Convex Anal. 17, 1485–1495 (2016)MathSciNetzbMATHGoogle Scholar
  5. Bracci, F., Contreras, M.D., Díaz Madrigal, S.: Evolution families and the Loewner equation I: the unit disc. J. für die reine und angewandte Mathematik (Crelle’s Journal) 672, 1–37 (2012)MathSciNetzbMATHGoogle Scholar
  6. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York (1983)zbMATHGoogle Scholar
  7. Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537–558 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Reich, S., Shoikhet, D.: Generation theory for semigroups of holomorphic mappings in Banach spaces. Abstr. Appl. Anal. 1, 1–44 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Reich, S., Shoikhet, D.: The existence of Resolvents of Holomorphic Generators in Banach Spaces, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Appl. Math., pp. 251–258. Marcel Dekker, New York City (1996)zbMATHGoogle Scholar
  10. Reich, S., Shoikhet, D.: Semigroups and generators on convex domains with the hyperbolic metric. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8(9), 231–250 (1997)MathSciNetzbMATHGoogle Scholar
  11. Reich, S., Shoikhet, D.: Metric domains, holomorphic mappings and nonlinear semigroups. Abstr. Appl. Anal. 3, 203–228 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Reich, S., Shoikhet, D.: Nonlinear Semigroups, Fixed Points, and the Geometry of Domains in Banach Spaces. World Scientific Publisher, Imperial College Press, London (2005)CrossRefzbMATHGoogle Scholar
  13. Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer Academic, Dordrecht (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2018

Authors and Affiliations

  • Luis Benítez-Babilonia
    • 1
  • Nancy López
    • 2
    Email author
  • Raúl Felipe
    • 3
  1. 1.Departamento de Matemáticas y EstadísticasUniversidad de CórdobaMonteríaColombia
  2. 2.Instituto de MatemáticasUniversidad de AntioquiaMedellínColombia
  3. 3.Centro de Investigación en Matemáticas, A. C.GuanajuatoMexico

Personalised recommendations