Advertisement

Weak Topological Conjugacy Via Character of Recurrence on Impulsive Dynamical Systems

  • E. M. BonottoEmail author
  • D. P. Demuner
  • G. M. Souto
Article
  • 114 Downloads

Abstract

In the present paper, we define the concept of weak topological conjugacy and we establish sufficient conditions to obtain this kind of topological conjugacy between two limit sets. We use the character of recurrence to obtain the results.

Keywords

Impulsive dynamical systems Topological conjugacy Character of recurrence 

Notes

Acknowledgements

We thank the anonymous referee for the careful correction and useful suggestions.

References

  1. Ambrosino, R., Calabrese, F., Cosentino, C., De Tommasi, G.: Sufficient conditions for finite-time stability of impulsive dynamical systems. IEEE Trans. Autom. Control 54, 861–865 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bonotto, E.M., Federson, M.: Topological conjugation and asymptotic stability in impulsive semidynamical systems. J. Math. Anal. Appl. 326, 869–881 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bonotto, E.M., Gimenes, L.P., Souto, G.M.: Asymptotically almost periodic motions in impulsive semidynamical systems. Topol. Methods in Nonlinear Anal. 49, 133–163 (2017)MathSciNetzbMATHGoogle Scholar
  4. Bonotto, E.M., Bortolan, M.C., Carvalho, A.N., Czaja, R.: Global attractors for impulsive dynamical systems—a precompact approach. J. Diff. Equ. 259, 2602–2625 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bonotto, E.M., Jimenez, M.J.: On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topol. Methods Nonlinear Anal. 44, 121–141 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bonotto, E.M., Ferreira, J.C.: Dissipativity in impulsive systems via Lyapunov functions. Mathematische Machrichten 2–3, 213–231 (2016)CrossRefzbMATHGoogle Scholar
  7. Cheban, D.N.: Asymptotically almost periodic solutions of differential equations. Publishing Corporation, Hindawi (2009)CrossRefzbMATHGoogle Scholar
  8. Ciesielski, K.: On semicontinuity in impulsive dynamical systems. Bull. Polish Acad. Sci. Math. 52, 71–80 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Ciesielski, K.: On stability in impulsive dynamical systems. Bull. Polish Acad. Sci. Math. 52, 81–91 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Ciesielski, K.: On time reparametrizations and isomorphisms of impulsive dynamical systems. Ann. Polon. Math. 84, 1–25 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cortés, J.: Discontinuous dynamical systems: a tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Syst. Mag. 28(3), 36–73 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. El-Gohary, A., Al-Ruzaiza, A.S.: Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solitons and Fractals 34, 443–453 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Irwin, M.C.: Smooth dynamical systems. Academic Press, London (1980)zbMATHGoogle Scholar
  14. Kaul, S.K.: On impulsive semidynamical systems. J. Math. Anal. Appl. 150(1), 120–128 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its applications 54. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  16. Liang, Z., Zeng, X., Pang, G., Liang, Y.: Periodic solution of a Leslie predator-prey system with ratio-dependent and state impulsive feedback control. Nonlinear Dynam. 89, 2941–2955 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Rivadeneira, Pablo S., Moog, Claude H.: Observability criteria for impulsive control systems with applications to biomedical engineering processes. Automatica J. IFAC 55, 125–131 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Smale, S.: On dynamical systems. Boletín de la Sociedad Matemática Mexicana 5(2), 195–198 (1960)zbMATHGoogle Scholar
  19. Yuan, Chengzhi, Wu, Fen: Delay scheduled impulsive control for networked control systems. IEEE Trans. Control Netw. Syst. 4, 587–597 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2018

Authors and Affiliations

  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São Paulo-Campus de São CarlosSão CarlosBrazil
  2. 2.Universidade Federal do Espírito SantoVitoriaBrazil

Personalised recommendations