Diagonal Involutions and the Borsuk–Ulam Property for Product of Surfaces

  • Daciberg Lima Gonçalves
  • Anderson Paião dos SantosEmail author


In this work we study a generalization of the Borsuk–Ulam Theorem. Namely, we replace the sphere \({\mathbb {S}}^n\) by a product of two closed surfaces \(M^2 \times N^2\) equipped with the diagonal involution \(T \times S\) where T and S are free involutions on \(M^2\) and \(N^2\), respectively, and the indexes \(i(M^2, T)=i(N^2, S)=2\). Then we compute the index of the pair \((M^2 \times N^2,T \times S)\) and we obtain a Borsuk-Ulam Theorem for \(M^2 \times N^2\).


Borsuk–Ulam Theorem Surfaces Involution Equivariant map Covering space Index 

Mathematics Subject Classification

Primary 55M20 secondary 55M35 



We would like to thank the referee for his careful reading and for his suggestions and comments which includes proposing the problem that appears at the end of the introduction. The presentation of this work has been substantially improved after the revision.


  1. Bauval, A., Gonçalves, D.L., Hayat, C., Zvengrowski, P.: The Borsuk-Ulam theorem for double coverings of Seifert manifolds. Zb. Pr. Inst. Mat. NAN Ukr. 6(6), 165–189 (2013)zbMATHGoogle Scholar
  2. Borsuk, K.: Drei Sätze über die n-dimensionale euklidische Sphäre. Fund. Math. 20, 177–190 (1933)CrossRefzbMATHGoogle Scholar
  3. Gonçalves, D.L.: The Borsuk-Ulam theorem for surfaces. Quaest. Math. 29, 117–123 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Gonçalves, D.L., Guaschi, J.: The Borsuk-Ulam theorem for maps into a surface. Topol. Appl. 157, 1742–1759 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Gonçalves, D.L., Hayat, C., Zvengrowski, P.: The Borsuk-Ulam theorem for manifolds, with applications to dimensions two and three, Group Actions and Homogeneous Spaces, 9–28. Fak. Mat. Fyziky Inform. Univ. Komenského, Bratislava (2010)Google Scholar
  6. Gonçalves, D.L., Neto, O.M., Spreafico, M.: The Borsuk-Ulam theorem for homotopy spherical space forms. J. Fixed Point Theory Appl. 9(2), 285–294 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Johnson, D. L.: Presentations of Groups, vol. 15 of London Mathematical Society, Student Texts. Cambridge University Press (1997)Google Scholar
  8. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: presentations of groups in terms of generators and relations, vol. A series of texts and monographs. Interscience Publishers, XIII of Pure and Applied Mathematics (1966)Google Scholar
  9. Massey, W. S.: Algebraic Topology: An introduction, vol. 56 of Graduate Texts in Mathematics. Springer, New York (1967)Google Scholar
  10. Vendrúsculo, D., Desideri, P.E., Pergher, P.L.Q.: Some generalizations of the Borsuk-Ulam theorem. Plubl. Math. Debrecen 78, 583–593 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2018

Authors and Affiliations

  • Daciberg Lima Gonçalves
    • 1
  • Anderson Paião dos Santos
    • 2
    Email author
  1. 1.Departamento de MatemáticaIME-Universidade de São PauloSão PauloBrazil
  2. 2.Departamento de MatemáticaUniversidade Tecnológica Federal do Paraná, UTFPR-CP, Avenida Alberto Carazzai, 1640Cornélio ProcópioBrazil

Personalised recommendations