Positivity of the Top Lyapunov Exponent for Cocycles on Semisimple Lie Groups over Hyperbolic Bases

  • Mário Bessa
  • Jairo Bochi
  • Michel Cambrainha
  • Carlos Matheus
  • Paulo Varandas
  • Disheng Xu
Article
  • 28 Downloads

Abstract

A theorem of Viana says that almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. In this note we extend this result to cocycles on any noncompact classical semisimple Lie group.

Keywords

Lyapunov exponents Linear cocycles Semisimple Lie groups 

References

  1. Aoun, R.: Transience of algebraic varieties in linear groups—applications to generic Zariski density. Ann. Inst. Fourier (Grenoble) 63, 2049–2080 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. Avila, A.: Density of positive Lyapunov exponents for \({\rm SL}(2,{\mathbb{R}})\)-cocycles. J. Am. Math. Soc. 24(4), 999–1014 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. Avila, A., Crovisier, S., Wilkinson, A.: Diffeomorphisms with positive metric entropy. Publ. Math. Inst. Hautes Études Sci. 124, 319–347 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. Avila, A., Krikorian, R.: Monotonic cocycles. Invent. Math. 202(1), 271–331 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. Avila, A., Viana, M.: Simplicity of Lyapunov spectra: a sufficient criterion. Port. Math. 64, 311–376 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. Avila, A., Viana, M.: Extremal Lyapunov exponents: an invariance principle and applications. Invent. Math. 181(1), 115–189 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. Avila, A., Santamaria, J., Viana, M.: Holonomy invariance: rough regularity and applications to Lyapunov exponents. Astérisque 358, 13–74 (2013)MathSciNetMATHGoogle Scholar
  8. Barreira, L., Pesin, Y.: Exponents and Smooth Ergodic Theory. University Lecture Series, 23. American Mathematical Society, Providence, RI, xii+151 (2002)Google Scholar
  9. Bochi, J.: Genericity of zero Lyapunov exponents. Ergod. Theory Dyn. Syst. 22, 1667–1696 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. Bochi, J., Viana, M.: The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann. Math. 161, 1423–1485 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. Bogachev, V.I.: Measure Theory, vol. 2. Springer, Berlin (2007)CrossRefMATHGoogle Scholar
  12. Bonatti, C., Crovisier, S., Shinohara, K.: The \(C^{1+\alpha }\) hypothesis in Pesin theory revisited. J. Mod. Dyn. 7(4), 605–618 (2013)MathSciNetMATHGoogle Scholar
  13. Bonatti, C., Gómez-Mont, X., Viana, M.: Généricité d’exposants de Lyapunov non-nuls pour des produits déterministes de matrices. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 579–624 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. Bonatti, C., Viana, M.: Lyapunov exponents with multiplicity 1 for deterministic products of matrices. Ergod. Theory Dyn. Syst. 24, 1295–1330 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)CrossRefMATHGoogle Scholar
  16. Breuillard, E.: A strong Tits alternative. arXiv:0804.1395 (2008)
  17. Colonius, F., Kliemann, W.: The Dynamics of Control. With an appendix by Lars Grüne. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (2000)MATHGoogle Scholar
  18. Duarte, P., Klein, S.: Positive Lyapunov exponents for higher dimensional quasiperiodic cocycles. Commun. Math. Phys. 332(1), 189–219 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. Furman, A.: Random walks on groups and random transformations. In: Hasselblatt. B., Katok, A. (eds.) Handbook of Dynamical Systems, vol. 1A, pp. 931–1014. North-Holland, Amsterdam (2002)Google Scholar
  20. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)MathSciNetCrossRefMATHGoogle Scholar
  21. Gibson, C.G., Wirthmüller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological Stability of Smooth Mappings. Lecture Notes in Mathematics, vol. 552. Springer, Berlin (1976)Google Scholar
  22. Gol’dsheid, Y.I., Margulis, G.A.: Lyapunov exponents of a product of random matrices. Russ. Math. Surv. 44(5), 11–71 (1989)MathSciNetCrossRefGoogle Scholar
  23. Guivarc’h, Y., Raugi, A.: Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes. Isr. J. Math. 65(2), 165–196 (1989)CrossRefMATHGoogle Scholar
  24. Knapp, A.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser Boston, Inc., Boston (2002)MATHGoogle Scholar
  25. Knill, O.: Positive Lyapunov exponents for a dense set of bounded measurable \({\rm SL}(2,{\mathbb{R}})\)-cocycles. Ergod. Theory Dyn. Syst. 12(2), 319–331 (1992)MathSciNetCrossRefMATHGoogle Scholar
  26. Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices. In: Arnold, L., Wihstutz, V. (eds.) Lyapunov Exponents (Bremen, 1984). Lecture Notes in Mathematics, vol. 1886, pp. 56–73, Springer, New York (1986)Google Scholar
  27. Moore, C.: Amenable groups of semi-simple groups and proximal flows. Isr. J. Math. 34, 121–138 (1979)CrossRefMATHGoogle Scholar
  28. Palais, R.: Foundations of Global Non-linear Analysis. Benjamin, New York (1968)MATHGoogle Scholar
  29. Viana, M.: Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents. Ann. Math. 167(2), 643–680 (2008)MathSciNetCrossRefMATHGoogle Scholar
  30. Xu, D.: Density of positive Lyapunov exponents for symplectic cocycles. J. Eur. Math. Soc. (JEMS) (2017) (to appear) Google Scholar
  31. Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Monographs in Mathematics, vol. 81. Birkhäuser Verlag, Basel (1984)CrossRefMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2017

Authors and Affiliations

  • Mário Bessa
    • 1
  • Jairo Bochi
    • 2
  • Michel Cambrainha
    • 3
  • Carlos Matheus
    • 4
  • Paulo Varandas
    • 5
  • Disheng Xu
    • 6
  1. 1.Departamento de MatemáticaUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Departamento de MatemáticaUniversidade Federal do Estado do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539)VilletaneuseFrance
  5. 5.Departamento de MatemáticaUniversidade Federal da BahiaSalvadorBrazil
  6. 6.Université Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu-Paris Rive gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Université Paris 06ParisFrance

Personalised recommendations