On third-order limiter functions for finite volume methods

  • Birte Schmidtmann
  • Rémi Abgrall
  • Manuel Torrilhon


In this article, we propose a finite volume limiter function for a reconstruction on the three-point stencil. Compared to classical limiter functions in the MUSCL framework, which yield 2nd-order accuracy, the new limiter is 3rd-order accurate for smooth solution. In an earlier work, such a 3rd-order limiter function was proposed and showed successful results [2]. However, it came with unspecified parameters. We close this gap by giving information on these parameters.


non-linear and non-polynomial limiter finite volume hyperbolic conservation laws shock capturing 

Mathematical subject classification

65M08 finite volume methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Artebrant and H. J. Schroll. Conservative logarithmic reconstructions and finite volume methods. SIAM Journal on Scientific Computing, 27(1) (2005), 294–314.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Cada and M. Torrilhon. Compact third-order limiter functions for finite volume methods. Journal of Computational Physics, 228(11) (2009), 4118–4145.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    F. Kemm. A comparative study of TVD-limiters–well-known limiters and an introduction of new ones. International Journal for Numerical Methods in Fluids, 67(4) (2011), 404–440.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R. Keppens and O. Porth. Scalar hyperbolic PDE simulations and coupling strategies. Journal of Computational and AppliedMathematics, 266 (2014), 87–101.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002).CrossRefMATHGoogle Scholar
  6. [6]
    A. Mignone, P. Tzeferacos and G. Bodo. High-order conservative finite difference GLMMHD schemes for cell-centered MHD. Journal of Computational Physics, 229(17) (2010), 5896–5920.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    B. Van Leer. Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1) (1979), 101–136.CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2016

Authors and Affiliations

  • Birte Schmidtmann
    • 1
  • Rémi Abgrall
    • 2
  • Manuel Torrilhon
    • 1
  1. 1.Center for Computational Engineering ScienceRWTH Aachen UniversityAachenGermany
  2. 2.Institut für Mathematik & Computational ScienceUniversität ZürichZurichSwitzerland

Personalised recommendations