Relative entropy based error estimates for discontinuous Galerkin schemes

  • Jan GiesselmannEmail author


These notes give an overview on how the relative entropy stability framework can be employed to derive a posteriori error estimates for semi-(spatially)-discrete discontinuous Galerkin schemes approximating systems of hyperbolic conservation laws endowed with one strictly convex entropy. We also show how these methods can be extended as to cover a related, higher order, model for compressible multiphase flows with non-convex energy.


hyperbolic conservation law discontinuous Galerkin method a posteriori error analysis compressible multiphase flows relative entropy 

Mathematical subject classification

35L60 65M60 76T10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Adjerid, K.D. Devine, J.E. Flaherty and L. Krivodonova. A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Engrg., 191(11-12) (2002), 1097–1112.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Chalons and P.G. LeFloch. High-order entropy-conservative schemes and kinetic relations for van derWaals fluids. J. Comput. Phys., 168(1) (2001), 184–206.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C.M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal., 70(2) (1979), 167–179.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R.J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J., 28(1) (1979), 137–188.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C. De Lellis and L. Székelyhidi,. On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal., 195(1) (2010), 225–260.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Dedner, Ch. Makridakis and M. Ohlberger. Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal., 45(2) (2007), 514–538.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Giesselmann. A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity. SIAM J. Math. Anal., 46(5) (2014), 3518–3539.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L. Gosse and Ch. Makridakis. Two a posteriori error estimates for one-dimensional scalar conservation laws. SIAM J. Numer. Anal., 38(3) (2000), 964–988.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Giesselmann, Ch. Makridakis and T. Pryer. Aposteriori analysis of discontinuous galerkin schemes for systems of hyperbolic conservation laws. SIAM J. Numer. Anal., 53 (2015), 1280–1303.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Giesselmann and T. Pryer. Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics, accepted for publication in IMA J. Numer. Anal., (2015).Google Scholar
  11. [11]
    R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput., 24(3) (2002), 979–1004 (electronic).MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J.S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods, volume 54 of “Texts in AppliedMathematics”. Springer, New York (2008).CrossRefzbMATHGoogle Scholar
  13. [13]
    V. Jovanovic and C. Rohde. Finite-volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates. Numer. Methods Partial Differential Equations, 21(1) (2005), 104–131.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    D. Kröner and M. Ohlberger. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions. Math. Comp., 69(229) (2000), 25–39.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    O.A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal., 41(6) (2003), 2374–2399 (electronic).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Kröner. Numerical schemes for conservation laws. Wiley-Teubner Series Advances in Numerical Mathematics. JohnWiley & Sons Ltd., Chichester (1997).Google Scholar
  17. [17]
    S.N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81(123) (1970), 228–255.MathSciNetGoogle Scholar
  18. [18]
    R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in AppliedMathematics. Cambridge University Press, Cambridge (2002).Google Scholar
  19. [19]
    N. Leger and A. Vasseur. Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal., 201(1) (2011), 271–302.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Ch. Makridakis and R.H. Nochetto. Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal., 41(4) (2003),1585–1594 (electronic).MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Ch. Makridakis and R.H. Nochetto. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math., 104(4) (2006), 489–514.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. Puppo and M. Semplice. Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys., 10(5) (2011), 1132–1160.MathSciNetGoogle Scholar
  23. [23]
    M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal., 81(4) (1983), 301–315.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2016

Authors and Affiliations

  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations