Advertisement

Central-upwind scheme for shallow water equations with discontinuous bottom topography

  • Andrew Bernstein
  • Alina Chertock
  • Alexander KurganovEmail author
Article

Abstract

Finite-volume central-upwind schemes for shallow water equations were proposed in [A. Kurganov and G. Petrova, Commun. Math. Sci., 5 (2007), 133–160]. These schemes are capable of maintaining “lake-at-rest” steady states and preserving the positivity of the computed water depth. The well-balanced and positivity preserving features of the central-upwind schemes are achieved, in particular, by using continuous piecewise linear interpolation of the bottom topography function. However, when the bottom function is discontinuous or a model with a moving bottom topography is studied, the continuous piecewise linear approximationmay not be sufficiently accurate and robust.

In this paper, we modify the central-upwind scheme by approximating the bottom topography function using a discontinuous piecewise linear reconstruction (the same approximation used to reconstruct evolved quantities in the finite-volume setting) as well as implementing a special quadrature for the geometric source term and draining time step technique. We prove that the new central-upwind scheme possesses the wellbalanced and positivitypreserving properties and illustrate its performance on a number of numerical examples.

Keywords

hyperbolic system of conservation and balance laws semi-discrete centralupwind scheme Saint Venant system of shallow water equations 

Mathematical subject classification

76M12 65M08 35L65 86-08 86A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput., 25 (2004), 2050–2065.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Berthon and F. Marche. A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput., 30(5) (2008), 2587–2612.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Bollermann, G. Chen, A. Kurganov and S. Noelle. A well-balanced reconstruction ofwet/dry fronts for the shallowwater equations. J. Sci. Comput., 56(2) (2013), 267–290.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Bollermann, S. Noelle and M. Lukácová-Medvidová. Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys., 10(2) (2011), 371–404.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Chertock, S. Cui, A. Kurganov and T. Wu. Well-balanced positivity preserving centralupwind scheme for the shallow water system with friction terms. Internat. J. Numer. Meth. Fluids, Submitted (1871).Google Scholar
  6. [6]
    A.J.C. de Saint-Venant. Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des marées dans leur lit. C.R. Acad. Sci. Paris, 73 (1871), 147–154.zbMATHGoogle Scholar
  7. [7]
    S. Gottlieb, D. Ketcheson and C.-W. Shu. Strong stability preserving Runge-Kutta andmultistep time discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011).CrossRefzbMATHGoogle Scholar
  8. [8]
    S. Gottlieb, C.-W. Shu and E. Tadmor. Strong stability-preserving high-order time discretization methods. SIAM Rev., 43 (2001), 89–112.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Kurganov. Well-balanced central-upwind scheme for compressible two-phase flows. Proceedings of the European Conference on ComputationalFluidDynamics ECCOMAS CFD (2006).Google Scholar
  10. [10]
    A. Kurganov and C.-T. Lin. On the reduction of numerical dissipation in centralupwind schemes. Commun. Comput. Phys., 2 (2007), 141–163.MathSciNetzbMATHGoogle Scholar
  11. [11]
    A. Kurganov, S. Noelle and G. Petrova. Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput., 23 (2001), 707–740.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Kurganov and G. Petrova. A second-order well-balanced positivity preserving centralupwind scheme for the saint-venant system. Commun. Math. Sci., 5 (2007), 133–160.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Kurganov and E. Tadmor. New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys., 160 (2000), 241–282.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P.G. LeFloch and M.D. Thanh. A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime. Journal of Computational Physics, 230 (2011), 7631–7660.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    K.-A. Lie and S. Noelle. On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput., 24(4) (2003), 1157–1174.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Nessyahu and E. Tadmor. Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys., 87(2) (1990), 408–463.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with a source term. Calcolo, 38(4) (2001), 201–231.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 21(5) (1984), 995–1011.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B. van Leer. Towards the ultimate conservative difference scheme. V. A secondorder sequel to Godunov’s method. J. Comput. Phys., 32(1) (1979), 101–136.CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2016

Authors and Affiliations

  • Andrew Bernstein
    • 1
  • Alina Chertock
    • 1
  • Alexander Kurganov
    • 2
    Email author
  1. 1.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  2. 2.Mathematics DepartmentTulane UniversityNew OrleansUSA

Personalised recommendations