Points on singular Frobenius nonclassical curves

  • Herivelto BorgesEmail author
  • Masaaki Homma


In 1990, Hefez and Voloch proved that the number of \(\mathbb {F}_q\)-rational points on a nonsingular plane q-Frobenius nonclassical curve of degree d is \(N=d(q-d+2)\). We address these curves in the singular setting. In particular, we prove that \(d(q-d+2)\) is a lower bound on the number of \(\mathbb {F}_q\)-rational points on such curves of degree d.


Algebraic curve Frobenius nonclassical curve Finite Field 

Mathematics Subject Classification

Primary 14H45 Secondary 14Hxx 



The first author was supported by FAPESP Grant Number 2015/03984-7.


  1. Borges, H.: On multi-Frobenius non-classical plane curves. Arch. Math. 93(6), 541–553 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Borges, H.: Frobenius nonclassical components of curves with separated variables. J. Number Theor. 159, 402–426 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Hefez, A., Voloch, J.F.: Frobenius nonclassical curves. Arch. Math. 54, 263–273 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Hirschfeld, N.J.W.P., Korchmáros, G.: On the number of solutions of an equation over a finite field. Bull. Lond. Math. Soc. 33, 16–24 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic curves over finite fields. Princeton University Press, Princeton (2008)CrossRefzbMATHGoogle Scholar
  6. Homma, M., Kim, S.J.: Sziklai’s conjecture on the number of points of a plane curve over a finite field III. Finite Fields Appl. 16(5), 315–319 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Stöhr, K.O., Voloch, J.F.: Weierstrass points on curves over finite fields. Proc. London Math. Soc. 52, 1–19 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2016

Authors and Affiliations

  1. 1.ICMCUniversidade de São PauloSão CarlosBrazil
  2. 2.Department of Mathematics and PhysicsKanagawa UniversityHiratsukaJapan

Personalised recommendations