Foliations with vanishing Chern classes

Article

Abstract

In this paper we aim at the description of foliations having tangent sheaf T F with c1 (T F) = c2(T F) = 0 on non-uniruled projective manifolds. We prove that the universal covering of the ambient manifold splits as a product, and that the Zariski closure of a general leaf of F is an Abelian variety. It turns out that the analytic type of the Zariski closures of leaves may vary from leaf to leaf. We discuss how this variation is related to arithmetic properties of the tangent sheaf of the foliation.

Keywords

foliation Chern class transverse structure 

Mathematical subject classification

32S65 37F75 57R30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Amoros, M. Manjarin and M. Nicolau. Deformations of Kähler manifolds with non vanishing holomorphic vector fields. J. Eur. Math. Soc. (JEMS), 14(4) (2012), 997–1040.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    M. Apte. Sur certaines classes caractéristiques des variétés Kähleriennes compactes. C.R. Acad. Sci. Paris, 240 (1955), 149–151.MATHMathSciNetGoogle Scholar
  3. [3]
    A. Beauville. Complex manifolds with split tangent bundle. Complex analysis and algebraic geometry, 61–70, de Gruyter, Berlin (2000).Google Scholar
  4. [4]
    J.-B. Bost. Algebraic leaves of algebraic foliations over number fields. Publ.Math. Inst. Hautes Études Sci., 93 (2001), 161–221.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    S. Boucksom, J.-P. Demailly, M. Paun and T. Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom., 22(2) (2013), 201–248.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    H. Brenner. On a problem of Miyaoka. Number fields and function fields — two parallel worlds, 51–59, Progr. Math., 239, Birkhäuser Boston, Boston, MA (2005).CrossRefGoogle Scholar
  7. [7]
    M. Brunella, J.V. Pereira and F. Touzet. Kähler manifolds with split tangent bundle. Bull. Soc. Math. France, 134(2) (2006), 241–252.MATHMathSciNetGoogle Scholar
  8. [8]
    M. Brunella. Uniformisation of foliations by curves. Holomorphic dynamical systems, 105–163, Lecture Notes in Math., 1998, Springer, Berlin (2010).CrossRefGoogle Scholar
  9. [9]
    F. Campana. Remarques sur le revêtement universel des variétés kählériennes compactes. Bull. Soc. Math. France, 122(2) (1994), 255–284.MATHMathSciNetGoogle Scholar
  10. [10]
    F. Campana and T. Peternell. Geometric stability of the cotangent bundle and the universal cover of a projective manifold (with an appendix by Matei Toma). Bull. Soc. Math. France, 139 (2011), 41–74.MATHMathSciNetGoogle Scholar
  11. [11]
    F. Campana, B. Claudon and P. Eyssidieux. Représentations linéaires des groupes kählériens: Factorisations et conjecture de Shafarevich linéaire, arXiv:1302.5016v2 [math.AG] (2013).Google Scholar
  12. [12]
    J.-P. Demailly. On the Frobenius integrability of certain holomorphic p-forms. Complex geometry (Göttingen, 2000), 93–98, Springer, Berlin (2002).CrossRefGoogle Scholar
  13. [13]
    S.K. Donaldson. Infinite determinants, stable bundles and curvature. Duke Math. J., 54(1) (1987), 231–247.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    T. Ekedahl, N.I. Shepherd-Barron and R.L Taylor. A conjecture on the existence of compact leaves of algebraic foliations, Shepherd-Baron’s homepage.Google Scholar
  15. [15]
    G. Faltings. Arakelov’s theorem for abelian varieties. Invent. Math., 73(3) (1983), 337–347.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    A. Fujiki. Deformation of uniruled manifolds. Publ. Res. Inst. Math. Sci., 17(2) (1981), 687–702.CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    X. Gómez-Mont. Integrals for holomorphic foliations with singularities having all leaves compact. Ann. Inst. Fourier (Grenoble), 39(2) (1989), 451–458.CrossRefMATHMathSciNetGoogle Scholar
  18. [18]
    A. Grothendieck. Techniques de construction et théorémes d’existence en géométrie algébrique. IV. Les schémas de Hilbert. Séminaire Bourbaki, Vol. 6, Exp. No. 221, 249–276, Soc. Math. France, Paris (1995).Google Scholar
  19. [19]
    A. Höring. The structure of uniruled manifolds with split tangent bundle. Osaka J. Math., 45(4) (2008), 1067–1084.MATHMathSciNetGoogle Scholar
  20. [20]
    N. Jacobson. Lie algebras. Republication of the 1962 original. Dover Publications, Inc., New York (1979).Google Scholar
  21. [21]
    S. Kobayashi. Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan, 15. Kanô Memorial Lectures, 5. Princeton University Press and Iwanami Shoten, Tokyo (1987).MATHGoogle Scholar
  22. [22]
    S. Kobayashi. Hyperbolic complex spaces. Grundlehren der Mathematischen Wissenschaften, 318, Springer-Verlag, Berlin, (1998). xiv+471 pp.CrossRefMATHGoogle Scholar
  23. [23]
    J. Kollár. Shafarevich maps and plurigenera of algebraic varieties. Invent. Math., 113(1) (1993), 177–215.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    J. Kollár. Subadditivity of the Kodaira dimension: fibers of general type. Algebraic geometry, Sendai, 1985, 361–398, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam (1987).Google Scholar
  25. [25]
    A. Langer. Semistable sheaves in positive characteristic. Ann. of Math. (2), 159(1) (2004), 251–276.CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    D. Lieberman. Compactness of the chow scheme: applications to automorphisms and deformations of Kählermanifolds. Fonctions de plusieurs variables complexes, III (Sém. F. Norguet, 1975–77), pp. 140–186, Lecture Notes in Math, 670.Google Scholar
  27. [27]
    Y. Miyaoka and S. Mori. A numerical criterion for uniruledness. Ann. of Math. (2), 124(1) (1986), 65–69.CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    F. Loray, J. V. Pereira & F. Touzet. Singular foliations with trivial canonical class, arXiv:1107.1538v3.Google Scholar
  29. [29]
    N.I. Shepherd-Barron. Semi-stability and reduction mod p. Topology, 37(3) (1998), 659–664.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    F. Touzet. Feuilletages holomorphes de codimension un dont la classe canonique est triviale. Ann. Sci. Éc. Norm. Supér. (4), 41(4) (2008), 655–668.MathSciNetGoogle Scholar
  31. [31]
    F. Touzet. Structure des feuilletages kähleriens en courbure semi-négative. Ann. Fac. Sci. Toulouse Math. (6), 19(3–4) (2010), 86–886.MathSciNetGoogle Scholar
  32. [32]
    K. Zuo. Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π 1 of compact Kähler manifolds. J. Reine Angew. Math., 472 (1996), 139–156.MATHMathSciNetGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2013

Authors and Affiliations

  1. 1.IMPAHorto, Rio de JaneiroBrazil
  2. 2.IRMARRennes CedexFrance

Personalised recommendations