Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions

  • François Gay-BalmazEmail author
  • Darryl D. Holm
  • Tudor S. Ratiu


Motivated by the problem of longitudinal data assimilation, e.g., in the registration of a sequence of images, we develop the higher-order framework for Lagrangian and Hamiltonian reduction by symmetry in geometric mechanics. In particular, we obtain the reduced variational principles and the associated Poisson brackets. The special case of higher order Euler-Poincaré and Lie-Poisson reduction is also studied in detail.


variational principle symmetry connection Poisson brackets higher order tangent bundle Lie-Poisson reduction Euler-Lagrange equations Euler-Poincaré equations Lagrange-Poincaré equations Hamilton-Poincaré equations 

Mathematical subject classification

70H50 37J15 70H25 70H30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Camarinha, F. Silva Leite and P. E. Crouch. Splines of class C k on non-Euclidean spaces, IMAJournal of Mathematical Control & Information, 12 (1995), 399–410.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    H. Cendra and S. D. Grillo. Lagrangian systems with higher order constraints, J. Math. Phys., 48(5) (2007), 052904, 35 pp.CrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Cendra, J. E. Marsden and T. S. Ratiu. Lagrangian Reduction by Stages, Memoirs of the Amer. Math. Soc., 152(722) (2001), 1–117.MathSciNetGoogle Scholar
  4. [4]
    H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu. Variational principles for Lie-Poisson and Hamilton-Poincaré equations. Mosc. Math. J., 3(3) (2003), 833–867.zbMATHMathSciNetGoogle Scholar
  5. [5]
    L. Colombo and D. Martín de Diego. On the geometry of higher-order variational problems on Lie groups, preprint available at <> (2011).
  6. [6]
    P.E. Crouch and F. Silva Leite. The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces, Journal of Dynamical and Control Systems, 1(2) (1995), 177–202.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    M. de Leon and P. R. Rodrigues. Generalized Classical Mechanics and Field Theory, North-Holland Mathematics Studies, 112 (1985).Google Scholar
  8. [8]
    M. de Leon, P. Pitanga and P. R. Rodrigues. Symplectic reduction of higher order Lagrangian systems with symmetry, J. Math. Phys., 35(12) (1994), 6546–6556.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    F. Gay-Balmaz, D. D. Holm, D. Meier, T. S. Ratiu and F.-X. Vialard. Invariant higher-order variational problems. Comm. Math. Phys., to appear. Preprint available at <> (2010).
  10. [10]
    S.D. Grillo. Higher order constrained Hamiltonian systems, J. Math. Phys., 50(8) (2009), 082901, 34 pp.CrossRefMathSciNetGoogle Scholar
  11. [11]
    D. D. Holm, J. E. Marsden and T. S. Ratiu. The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1–81.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    I. I. Hussein and A. M. Bloch. Dynamic interpolation on Riemannian manifolds: an application to interferometric imaging, Proceedings of the 2004 American Control Conference, 1 (2004), 685–690.Google Scholar
  13. [13]
    R. Montgomery. Canonical formulations of a particle in a Yang-Mills field, Lett. Math. Phys., 8 (1984), 59–67.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    R. Montgomery. The Bundle Picture in Mechanics, Ph.D. thesis, University of California, Berkeley (1986).Google Scholar
  15. [15]
    R. Montgomery. Isoholonomic problems and some applications, Comm. Math Phys., 128 (1990), 565–592.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    R. Montgomery. Gauge theory of the falling cat, Fields Inst. Commun., 1 (1993), 193–218.Google Scholar
  17. [17]
    R. Montgomery, J. E. Marsden and T. Ratiu. Gauged Lie-Poisson structures, Contemp. Math., 28 (1984), 101–114.MathSciNetGoogle Scholar
  18. [18]
    L. Noakes, G. Heinzinger and B. Paden. Cubic splines on curved spaces, IMA Journal of Mathematical Control & Information, 6 (1989), 465–473.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    D. Schweikert. An interpolation curve using a spline in tension, J. Math. and Phys., 45 (1966), 312–317.zbMATHMathSciNetGoogle Scholar
  20. [20]
    S. Sternberg. Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci., 74 (1977), 5253–5254.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    A. Weinstein. A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2 (1978), 417–420.CrossRefzbMATHGoogle Scholar
  22. [22]
    S. K. Wong. Field and particle equations for the classical Yang-Mills field and particles with isotopic spin, Il Nuovo Cimento, LXV (1970), 689–694.Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • François Gay-Balmaz
    • 1
    Email author
  • Darryl D. Holm
    • 2
  • Tudor S. Ratiu
    • 3
  1. 1.Laboratoire de Météorologie DynamiqueÉcole Normale Supérieure/CNRSParisFrance
  2. 2.Department of MathematicsImperial CollegeLondonUK
  3. 3.Section de Mathématiques and Bernoulli CenterÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations