Advertisement

The Hasse-Witt invariant in some towers of function fields over finite fields

  • A. Bassa
  • P. Beelen
Article

Abstract

In this article we investigate the p-rank of function fields in several good towers. To do this we first recall and establish some properties of the behaviour of the p-rank under extensions. Then we compute the p-ranks of function fields in several optimal towers over a quadratic field \( \mathbb{F}_{q^2 } \), as well as for a specific good tower over a cubic field \( \mathbb{F}_{q^3 } \), which was introduced by Bassa, Garcia and Stichtenoth.

Keywords

towers of function fields Zink’s bound Hasse-Witt invariant p-rank 

Mathematical subject classification

14H05 11G20 14G50 14G35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bassa, A. Garcia and H. Stichtenoth. A New Tower over Cubic Finite Fields. Mosc. Math. J., 8 (2008), 401–418.MATHMathSciNetGoogle Scholar
  2. [2]
    J. Bezerra, A. Garciaand H. Stichtenoth. An explicit tower of function fields over cubic finite fields and Zink’s lower bound. J. Reine Angew. Math., 589 (2005), 159–199.MATHMathSciNetGoogle Scholar
  3. [3]
    I. Cascudo, R. Cramerand C. Xing. Torsion-Limits for Towers and Asymptotically Good Special Codes in Secure Computation and Complexity, manuscript.Google Scholar
  4. [4]
    V.G. Drinfeld and S.G. Vladut. Number of points of an algebraic curve. Funct. Anal., 17 (1983), 53–54.MathSciNetCrossRefGoogle Scholar
  5. [5]
    N.D. Elkies. Explicit towers of Drinfeld modular curves. Progress in Mathematics 202 (Proceedings of the 3rd European Congress of Mathematics, Barcelona, 7/2000), pp. 189–198, (2001).Google Scholar
  6. [6]
    N.J. Fine. Binomial coefficients modulo a prime. American Math. Monthly, 54 (1947), 589–592.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Garcia and H. Stichtenoth. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound. Invent. Math., 121 (1995), 211–222.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Garcia and H. Stichtenoth. On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory, 61 (1996), 248–273.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Garciaand H. Stichtenoth. Some Artin-Schreier towers are easy. Mosc.Math. J., 5 (2005), 767–774.MathSciNetGoogle Scholar
  10. [10]
    A. Garcia and H. Stichtenoth. On the Galois closure of towers. Recent trends in coding theory and its applications. 83–92, AMS/IP Stud. Adv. Math., 41, Amer. Math. Soc., Providence, RI (2007).Google Scholar
  11. [11]
    H. Hasse and E. Witt. Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade p über einem algebraischen Funktionenkörper der Charakteristik p., Monatsh. Math. Phys., 43 (1936), 477–492.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Y. Ihara. Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3)(1981), 721–724, (1982).MATHMathSciNetGoogle Scholar
  13. [13]
    E. Lucas. Sur les congruences des nombers Eulériens et descoefficients différentiels des fonctions trigonométriques, suivant un module premier. Bull.Soc.Math. France., 6 (1878), 49–54.MathSciNetGoogle Scholar
  14. [14]
    J.I. Manin. The Hasse-Witt matrix of an algebraic curve. Amer. Math. Soc. Transl., 45 (1965), 245–264.Google Scholar
  15. [15]
    M. Rosen. Some remarks on the p-rank of an algebraic curve. Arch. Math., 41 (1983), 143–146.MATHCrossRefGoogle Scholar
  16. [16]
    J.-P. Serre. Sur la topologie des variétés algébriques en caractéristique p. Symposium internacional de topología algebraica, Mexico City, pp. 24–53, (1958).Google Scholar
  17. [17]
    H. Stichtenoth. Die Hasse-Witt-Invariante eines Kongruenzfunktionenkörpers. Arch. Math., 33 (1980), 357–360.MathSciNetCrossRefGoogle Scholar
  18. [18]
    H. Stichtenoth. Algebraic function fields and codes. Second edition, Graduate Texts in Mathematics, 254. Springer-Verlag (2009).Google Scholar
  19. [19]
    D. Subrao. The p-rank of Artin-Schreier curves. Manuscripta Math., 16 (1975), 169–193.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    T. Zink. Degeneration of Shimura surfaces and a problem in coding theory. Fundamentals of computation teory (Cottbus, 1985), LNCS 199, pp. 503–511, Springer, Berlin (1985).CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.CWIAmsterdamThe Netherlands
  2. 2.DTU-MathematicsKgs. LyngbyDenmark

Personalised recommendations