Advertisement

Mycorrhiza

, Volume 29, Issue 6, pp 637–648 | Cite as

How deep can ectomycorrhizas go? A case study on Pisolithus down to 4 meters in a Brazilian eucalypt plantation

  • Agnès RobinEmail author
  • Céline Pradier
  • Hervé Sanguin
  • Frédéric Mahé
  • George Rodrigues Lambais
  • Arthur Prudêncio de Araujo Pereira
  • Amandine Germon
  • Maiele Cintra Santana
  • Pierre Tisseyre
  • Anne-Laure Pablo
  • Pauline Heuillard
  • Marie Sauvadet
  • Jean-Pierre Bouillet
  • Fernando Dini Andreote
  • Claude Plassard
  • José Léonardo de Moraes Gonçalves
  • Elke Jurandy Bran Nogueira Cardoso
  • Jean-Paul Laclau
  • Philippe Hinsinger
  • Christophe Jourdan
Original Article

Abstract

Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.

Keywords

Deep fine roots ECM root tips Eucalyptus grandis Next-generation sequencing Diversity Tropical forest plantations 

Notes

Acknowledgments

We would like to thank the staff of the Itatinga Experimental Station (ESALQ-USP), as well as all the students present at the station during the sampling, and Eder Araujo da Silva and Floragro for their technical support. The site belongs to the SOERE F-ORE-T network, which is supported annually by ECOFOR, AllEnvi and the French national research infrastructure ANAEE (http://www.anaeefrance.fr/fr/). This work was performed in collaboration with the GeT core facility, Toulouse, France (http://get.genotoul.fr/), and was supported by France Génomique National infrastructure, funded as part of “Investissement d’avenir” program managed by Agence Nationale pour la Recherche (contract ANR-10-INBS-09).

Authorship policy

A.R., J.P.L., J.P.B., F.D.A., E.C., C.P., J.L.M.G, P.H., C.J., designed the study; A.R., C.P., G.R.L., A.P.A.P., A.G., M.C.S. A.L.P., P.T., P.H., performed research; F.M., H.S, A.R., A.G., M.S., analyzed data; A.R. wrote the paper with contributions of C.P. and of all authors; all the authors helped to interpret the results of the study, reviewed the manuscript and contributed substantially to the revisions.

Funding information

This research was funded by the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) and the project FAPESP 2016/18944-3 “Climate change and energy efficiency in agriculture: a focus on water stress, organic management and soil biology”

Supplementary material

572_2019_917_MOESM1_ESM.docx (46 kb)
Table S1. Physical and chemical properties of the soil in the W+ and W- pits. The data comes from Pradier et al. (2017). The soil samples were collected at the same time, from the same pits, as the fine roots and ECM root tips analyzed in this study. Different letters indicate significant differences between depths. P-values in bold with an asterisk indicate significant effects (Tukey test, P < 0.05). pH: pH measured in CaCl2, %H: humidity percentage, %C and %N: total C and N contents, P: P extracted with an anion exchange resin, K: K extracted with a cation exchange resin. (DOCX 46 kb)
572_2019_917_MOESM2_ESM.pdf (147 kb)
Figure S1. Soil water content (v/v%) in the W+ and W- plots down to 4 meters. The 4 months around the sampling period are outlined. SWC was interpolated by a contour line interpolation using marching square algorithm (R software version 3.2.5 and the plotly package version 4.5.6). (PDF 146 kb)
572_2019_917_MOESM3_ESM.html (207 kb)
File S1. All codes and representative OTU sequences in HTML format. The purpose of this document is to provide the reader with details about the bioinformatic methods used to prepare this paper. The code snippets and shell commands presented here were executed on a Debian GNU/Linux 8, and might have to be adapted to your particular system. (HTML 206 kb)

References

  1. Allen MF, Kitajima K (2013) In situ high-frequency observations of mycorrhizas. New Phytol 200:222–228.  https://doi.org/10.1111/nph.12363 CrossRefPubMedGoogle Scholar
  2. Azul AM, Sousa JP, Agerer R, Martin MP, Freitas H (2010) Land use practices and ectomycorrhizal fungal communities from oak woodlands dominated by Quercus suber L. considering drought scenarios. Mycorrhiza 20:73–88.  https://doi.org/10.1007/s00572-009-0261-2 CrossRefPubMedGoogle Scholar
  3. Bakker MR, Augusto L, Achat DL (2006) Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286:37–51.  https://doi.org/10.1007/s11104-006-9024-4 CrossRefGoogle Scholar
  4. Battie-Laclau P, Laclau JP, Piccolo MC, Arenque BC, Beri C, Mietton L, Muniz MRA, Jordan-Meille L, Buckeridge MS, Nouvellon Y, Ranger J, Bouillet JP (2013) Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant Soil 371:19–35.  https://doi.org/10.1007/s11104-013-1663-7 CrossRefGoogle Scholar
  5. Bordron B, Robin A, Oliveira IR, Guillemot J, Laclau JP, Jourdan C, Nouvellon Y, Abreu-Junior CH, Trivelin PCO, Gonçalves JLM, Plassard C, Bouillet JP (2019) Fertilization increases the functional specialization of fine roots in deep soil layers for young Eucalyptus grandis trees. For Ecol Manag 431:6–19.  https://doi.org/10.1016/j.foreco.2018.03.018 CrossRefGoogle Scholar
  6. Bornyasz MA, Graham RC, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126:141–160.  https://doi.org/10.1016/j.geoderma.2004.11.023 CrossRefGoogle Scholar
  7. Christina M, Laclau JP, Goncalves JLM, Jourdan C, Nouvellon Y, Bouillet JP (2011) Almost symmetrical vertical growth rates above and below ground in one of the world's most productive forests. Ecosphere 2(1-10):art27.  https://doi.org/10.1890/es10-00158.1 CrossRefGoogle Scholar
  8. Christina M, le Maire G, Battie-Laclau P, Nouvellon Y, Bouillet JP, Jourdan C, de Moraes Gonçalves JL, Laclau JP (2015) Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations. Glob Chang Biol 21:2022–2039.  https://doi.org/10.1111/gcb.12817 CrossRefPubMedGoogle Scholar
  9. Christina M, Nouvellon Y, Laclau JP, Stape JL, Bouillet JP, Lambais GR, le Maire G (2017) Importance of deep water uptake in tropical eucalypt forest. Funct Ecol 31:509–519.  https://doi.org/10.1111/1365-2435.12727 CrossRefGoogle Scholar
  10. Christina M, le Maire G, Nouvellon Y, Vezy R, Bordon B, Battie-Laclau P, Gonçalves JLM, Delgado-Rojas JS, Bouillet JP, Laclau JP (2018) Simulating the effects of different potassium and water supply regimes on soil water content and water table depth over a rotation of a tropical Eucalyptus grandis plantation. For Ecol Manag 418:4–14 https://.  https://doi.org/10.1016/j.foreco.2017.12.048 CrossRefGoogle Scholar
  11. Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5(1-20).  https://doi.org/10.3389/fmicb.2014.00261
  12. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618.  https://doi.org/10.1126/science.1231923 CrossRefPubMedGoogle Scholar
  13. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536.  https://doi.org/10.1111/nph.13208 CrossRefPubMedGoogle Scholar
  14. Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78:8587–8594.  https://doi.org/10.1128/aem.02050-12 CrossRefPubMedPubMedCentralGoogle Scholar
  15. da Silva EV, Bouillet JP, de Moraes Gonçalves JL, Junior CHA, Trivelin PCO, Hinsinger P, Jourdan C, Nouvellon Y, Stape JL, Laclau JP (2011) Functional specialization of Eucalyptus fine roots: contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths. Funct Ecol 25:996–1006.  https://doi.org/10.1111/j.1365-2435.2011.01867.x CrossRefGoogle Scholar
  16. De Beeck MO, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV (2014) Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9(1-11):e97629.  https://doi.org/10.1371/journal.pone.0097629 CrossRefGoogle Scholar
  17. Dickie IA, Koide RT (2014) Deep thoughts on ectomycorrhizal fungal communities. New Phytol 201:1083–1085.  https://doi.org/10.1111/nph.12674 CrossRefPubMedGoogle Scholar
  18. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535.  https://doi.org/10.1046/j.1469-8137.2002.00535.x CrossRefGoogle Scholar
  19. Ducousso M, Duponnois R, Thoen D, Prin Y (2012) Diversity of ectomycorrhizal fungi associated with eucalyptus in Africa and Madagascar. Int J For Res 2012:1–10.  https://doi.org/10.1155/2012/450715 CrossRefGoogle Scholar
  20. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Egerton-Warburton L (2015) Aluminum-tolerant Pisolithus ectomycorrhizas confer increased growth, mineral nutrition, and metal tolerance to eucalyptus in acidic mine spoil. Appl Environ Soil Sci 803821:1–9.  https://doi.org/10.1155/2015/803821 CrossRefGoogle Scholar
  22. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390.  https://doi.org/10.1111/j.1469-8137.2006.01669.x CrossRefGoogle Scholar
  23. Giachini AJ, Oliveira VL, Castellano MA, Trappe JM (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92:1166–1177.  https://doi.org/10.2307/3761484 CrossRefGoogle Scholar
  24. Gocke MI, Huguet A, Derenne S, Kolb S, Dippold MA, Wiesenberg GLB (2017) Disentangling interactions between microbial communities and roots in deep subsoil. Sci Total Environ 575:135–145.  https://doi.org/10.1016/j.scitotenv.2016.09.184 CrossRefPubMedGoogle Scholar
  25. Hogberg MN, Hogberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795.  https://doi.org/10.1046/j.1469-8137.2002.00417.x CrossRefGoogle Scholar
  26. Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601.  https://doi.org/10.1007/s00442-006-0562-5 CrossRefPubMedGoogle Scholar
  27. Hui N, Liu XX, Kotze DJ, Jumpponen A, Francini G, Setala H (2017) Ectomycorrhizal fungal communities in urban parks are similar to those in natural forests but shaped by vegetation and park age. Appl Environ Microbiol 83(1-12).  https://doi.org/10.1128/aem.01797-17
  28. IBÁ (2015) Report. Indústria Brasileira de Árvores – Brazilian tree industry. Brasília, 64 pp. https://www.iba.org/datafiles/publicacoes/pdf/iba-2015.pdf
  29. Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991.  https://doi.org/10.1016/j.soilbio.2008.08.017 CrossRefGoogle Scholar
  30. Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon ZWJ (ed) The rhizosphere: an ecological perspective. Academic, New York, pp 73–100CrossRefGoogle Scholar
  31. Koljalg U et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277.  https://doi.org/10.1111/mec.12481 CrossRefPubMedGoogle Scholar
  32. Laclau JP, Ranger J, de Moraes Gonçalves JL, Maquère V, Krusche AV, M’Bou AT, Nouvellon Y, Saint-André L, Bouillet JP, de Cassia Piccolo M, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical eucalyptus plantations main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785.  https://doi.org/10.1016/j.foreco.2009.06.010 CrossRefGoogle Scholar
  33. Laclau J-P, da Silva EA, Rodrigues Lambais G, Bernoux M, le Maire G, Stape JL, Bouillet JP, Gonçalves JLM, Jourdan C, Nouvellon Y (2013) Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Front Plant Sci 4(1-12).  https://doi.org/10.3389/fpls.2013.00243
  34. Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentration. New Phytol 149:349–355.  https://doi.org/10.1046/j.1469-8137.2001.00027.x CrossRefGoogle Scholar
  35. Lambais GR, Jourdan C, de Cássia Piccolo M, Germon A, Pinheiro RC, Nouvellon Y, Stape JL, Campoe OC, Robin A, Bouillet JP, le Maire G, Laclau JP (2017) Contrasting phenology of Eucalyptus grandis fine roots in upper and very deep soil layers in Brazil. Plant Soil 421:301–318.  https://doi.org/10.1007/s11104-017-3460-1 CrossRefGoogle Scholar
  36. Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90.  https://doi.org/10.1007/s00572-010-0348-9 CrossRefPubMedGoogle Scholar
  37. Li CH, Yan K, Tang LS, Jia ZJ, Li Y (2014) Change in deep soil microbial communities due to long-term fertilization. Soil Biol Biochem 75:264–272.  https://doi.org/10.1016/j.soilbio.2014.04.023 CrossRefGoogle Scholar
  38. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620.  https://doi.org/10.1111/j.1469-8137.2006.01936.x CrossRefPubMedGoogle Scholar
  39. Maghnia FZ, Abbas Y, Mahé F, Kerdouh B, Tournier E, Ouadji M, Tisseyre P, Prin Y, el Ghachtouli N, Bakkali Yakhlef SE, Duponnois R, Sanguin H (2017) Habitat- and soil-related drivers of the root-associated fungal community of Quercus suber in the Northern Moroccan forest. PLoS One 12:e0187758.  https://doi.org/10.1371/journal.pone.0187758 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. Peerj 2.  https://doi.org/10.7717/peerj.593 CrossRefGoogle Scholar
  41. Maquere V (2008) Dynamics of mineral elements under a fest-growing eucalyptus plantation in Brazil. In: Implications for soil sustainability. Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech), Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, PiracicabaGoogle Scholar
  42. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12.  https://doi.org/10.14806/ej.17.1.200 CrossRefGoogle Scholar
  43. McCormack ML, Fernandez CW, Brooks H, Pritchard SG (2017) Production dynamics of Cenococcum geophilum ectomycorrhizas in response to long-term elevated CO2 and N fertilization. Fungal Ecol 26:11–19.  https://doi.org/10.1016/j.funeco.2016.11.001 CrossRefGoogle Scholar
  44. Moyersoen B, Fitter AH, Alexander IJ (1998) Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup National Park rain forest, Cameroon, in relation to edaphic parameters. New Phytol 139:311–320.  https://doi.org/10.1046/j.1469-8137.1998.00190.x CrossRefGoogle Scholar
  45. Nehls U, Dietz S (2014) Fungal aquaporins: cellular functions and ecophysiological perspectives. Appl Microbiol Biotechnol 98:8835–8851.  https://doi.org/10.1007/s00253-014-6049-0 CrossRefPubMedGoogle Scholar
  46. Pagano M, Lugo M (eds) (2019) Mycorrhizal fungi in South America. Springer, Berlin Fungal Biology Series. 374 p.  https://doi.org/10.1007/978-3-030-15228-4 CrossRefGoogle Scholar
  47. Pereira APD et al (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12:e0180371.  https://doi.org/10.1371/journal.pone.0180371 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Phillips RP, Ibanez I, D'Orangeville L, Hanson PJ, Ryan MG, McDowell NG (2016) A belowground perspective on the drought sensitivity of forests: towards improved understanding and simulation. For Ecol Manag 380:309–320.  https://doi.org/10.1016/j.foreco.2016.08.043 CrossRefGoogle Scholar
  49. Pradier C, Hinsinger P, Laclau JP, Bouillet JP, Guerrini IA, Gonçalves JLM, Asensio V, Abreu-Junior CH, Jourdan C (2017) Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in a deep Ferralsol in Brazil. Plant Soil 414:339–354.  https://doi.org/10.1007/s11104-016-3107-7 CrossRefGoogle Scholar
  50. Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417.  https://doi.org/10.1016/j.soilbio.2006.08.008 CrossRefGoogle Scholar
  51. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Available online at https://www.R-project.org/ Google Scholar
  52. Ren CJ, Chen J, Lu X, Doughty R, Zhao F, Zhong Z, Han X, Yang G, Feng Y, Ren G (2018) Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biol Biochem 116:4–10.  https://doi.org/10.1016/j.soilbio.2017.09.028 CrossRefGoogle Scholar
  53. Richard F, Roy M, Shahin O, Sthultz C, Duchemin M, Joffre R, Selosse M-A (2011) Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Ann For Sci 68:57–68.  https://doi.org/10.1007/s13595-010-0007-5 CrossRefGoogle Scholar
  54. Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. Peerj 4:e2584.  https://doi.org/10.7717/peerj.2584 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rosling A, Landeweert R, Lindahl BD, Larsson KH, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783.  https://doi.org/10.1046/j.1469-8137.2003.00829.x CrossRefGoogle Scholar
  56. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596.  https://doi.org/10.1128/aem.02775-08 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Scattolin L, Montecchio L, Agerer R (2008) The ectomycorrhizal community structure in high mountain Norway spruce stands. Trees Struct Funct 22:13–22.  https://doi.org/10.1007/s00468-007-0164-9 CrossRefGoogle Scholar
  58. Schmidt PA, Balint M, Greshake B, Bandow C, Rombke J, Schmitt I (2013) Illumina metabarcoding of a soil fungal community. Soil Biol Biochem 65:128-132.  https://doi.org/10.1016/j.soilbio.2013.05.014 CrossRefGoogle Scholar
  59. Silva RF, Lupatini M, Trindade L, Antoniolli ZI, Steffen RB, Andreazza R (2013) Copper resistance of different ectomycorrhizal fungi such as Pisolithus microcarpus, Pisolithus sp., Scleroderma sp. and Suillus sp. Braz J Microbiol 44:619–627.  https://doi.org/10.1590/S1517-83822013005000039 CrossRefGoogle Scholar
  60. Steffen RB, Antoniolli ZI, Steffen GPK, Jacques RJS, dos Santos ML, Godoy HT, Bogusz S (2013) Eucalyptus essential oil as bio-stimulator of the growth of in vitro ectomycorrhizal fungi. Cienc Florest 23:403–414.  https://doi.org/10.5902/198050989285 CrossRefGoogle Scholar
  61. Stone MM, DeForest JL, Plante AF (2014) Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol Biochem 75:237–247.  https://doi.org/10.1016/j.soilbio.2014.04.017 CrossRefGoogle Scholar
  62. Sulzbacher MA, Grebenc T, Jacques RJS, Antoniolli ZI (2013) Ectomycorrhizal fungi from southern Brazil - a literature-based review, their origin and potential hosts. Mycosphere 4:61–95.  https://doi.org/10.5943/mycosphere/4/1/5 CrossRefGoogle Scholar
  63. Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850.  https://doi.org/10.1046/j.1365-294x.1999.00773.x CrossRefPubMedGoogle Scholar
  64. Tedersoo L, Koljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165.  https://doi.org/10.1046/j.0028-646x.2003.00792.x CrossRefGoogle Scholar
  65. Tournier E et al (2015) Modification of a commercial DNA extraction kit to recover safely and rapidly DNA and RNA simultaneously from soil, for total and active molecular biomass quantification. MethodsX 2:182–191.  https://doi.org/10.1016/j.mex.2015.03.007 eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  66. Trocha LK, Bulaj B, Kutczynska P, Mucha J, Rutkowski P, Zadworny M (2017) The interactive impact of root branch order and soil genetic horizon on root respiration and nitrogen concentration. Tree Physiol 37:1055–1068.  https://doi.org/10.1093/treephys/tpx096 CrossRefPubMedGoogle Scholar
  67. Wickham H (2009) Ggplot2: Elegant Graphics for Data Analysis. 2nd Edition, Springer, New York.  https://doi.org/10.1007/978-0-387-98141-3 CrossRefGoogle Scholar
  68. Wickham H (2017) Tidyverse: Easily Install and Load "Tidyverse" Packages. R package version 1.1.1. Available: https://CRAN.R-project.org/package=tidyverse
  69. Yuste JC et al (2011) Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 17:1475–1486.  https://doi.org/10.1111/j.1365-2486.2010.02300.x CrossRefGoogle Scholar
  70. Zheng L, Zhao X, Zhu GB, Yang W, Xia C, Xu T (2017) Occurrence and abundance of ammonia-oxidizing archaea and bacteria from the surface to below the water table, in deep soil, and their contributions to nitrification. Microbiologyopen 6:8.  https://doi.org/10.1002/mbo3.488 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Agnès Robin
    • 1
    • 2
    • 3
    Email author
  • Céline Pradier
    • 2
    • 4
  • Hervé Sanguin
    • 5
    • 6
  • Frédéric Mahé
    • 5
    • 6
  • George Rodrigues Lambais
    • 7
  • Arthur Prudêncio de Araujo Pereira
    • 3
    • 8
  • Amandine Germon
    • 9
  • Maiele Cintra Santana
    • 3
  • Pierre Tisseyre
    • 10
  • Anne-Laure Pablo
    • 2
  • Pauline Heuillard
    • 11
  • Marie Sauvadet
    • 2
  • Jean-Pierre Bouillet
    • 1
    • 2
  • Fernando Dini Andreote
    • 3
  • Claude Plassard
    • 2
  • José Léonardo de Moraes Gonçalves
    • 3
  • Elke Jurandy Bran Nogueira Cardoso
    • 3
  • Jean-Paul Laclau
    • 2
    • 4
  • Philippe Hinsinger
    • 2
  • Christophe Jourdan
    • 2
    • 4
  1. 1.CIRAD, UMR Eco&SolsPiracicabaBrazil
  2. 2.Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgroMontpellierFrance
  3. 3.ESALQUniversity São PauloPiracicabaBrazil
  4. 4.CIRAD, UMR Eco&SolsMontpellierFrance
  5. 5.CIRAD, UMR BGPIMontpellierFrance
  6. 6.BGPI, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgroMontpellierFrance
  7. 7.CENAUniversity São PauloPiracicabaBrazil
  8. 8.Federal University of CearáFortalezaBrazil
  9. 9.UNESP, University São PauloBotucatuBrazil
  10. 10.LSTM, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgroMontpellierFrance
  11. 11.INRA, US 1426, GeT-PlaGe, GenotoulCastanet-TolosanFrance

Personalised recommendations