pp 1–15 | Cite as

Metabolic responses to arbuscular mycorrhizal fungi are shifted in roots of contrasting soybean genotypes

  • María Soraya SalloumEmail author
  • Marina Insani
  • Mariela Inés Monteoliva
  • María Florencia Menduni
  • Sonia Silvente
  • Fernando Carrari
  • Celina Luna
Original Article


Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowledge of the symbiosis-related changes of the transcriptome and proteome, only sparse clues regarding metabolite alterations are available. Here, we evaluated metabolite changes between improved (I-1) and unimproved (UI-4) soybean genotypes and also compare their metabolic responses after AM root colonization. Soybean genotypes inoculated or not with AM were grown in a chamber under controlled light and temperature conditions. At 20 days after inoculation, we evaluated soluble metabolites of each genotype and treatment measured by GC-MS. In this analysis, when comparing non-AM roots between genotypes, I-1 had a lower amount of 31 and higher amount of only 4 metabolites than the UI-4 genotype. When comparing AM roots, I-1 had a lower amount of 36 and higher amount of 4 metabolites than UI-4 (different to those found altered in non-AM treated plants). Lastly, comparing the AM vs non-AM treatments, I-1 had increased levels of three and reduced levels of 24 metabolites, while UI-4 only had levels of 12 metabolites reduced by the effect of mycorrhizas. We found the major changes in sugars, polyols, amino acids, and carboxylic acids. In a targeted analysis, we found lower levels of isoflavonoids and alpha-tocopherol and higher levels of malondialdehyde in the I-1 genotype that can affect soybean-AM symbiosis. Our studies have the potential to support improving soybean with a greater capacity to be colonized and responsive to AM interaction.


Glycine max Genotypes Symbiosis Metabolomic Improvement 



We are very grateful to Dr. Javier Gilli for providing the soybean seeds.


MSS performed the research, analyzed the data, and wrote the paper; MI performed the research, analyzed the data, and wrote the paper; MIM analyzed the data and wrote the paper; MFM performed the research; SS wrote the paper; FC wrote the paper; CL conceived and designed the study, analyzed the data, and wrote the paper.

Funding information

This work was funded by the National Promotion Agency for Science and Technology (ANPCyT) through the Fund for Scientific Research and Technology (FONCyT): Projects of Scientific and Technological Research (PICT) 2012-0339 and by the National Institute of Agricultural Technology (INTA) through Projects N°1133032 and N°1127033. The National Council of Scientific and Technical Research (CONICET) awarded scholarships to M. S. Salloum and M. F Menduni; and Scientific Research and Technology (FONCyT) awarded a scholarship to M. F. Menduni.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

572_2019_909_Fig4_ESM.png (48 kb)
Fig. S1

Hierarchical Cluster analysis of primary metabolites measured by GC-MS (as shown in Fig. 1A) (PNG 48 kb)

572_2019_909_MOESM1_ESM.tif (146 kb)
High Resolution Image (TIF 145 kb)
572_2019_909_Fig5_ESM.png (748 kb)
Fig. S2

Mapping for relative metabolic concentration on known pathways for non-mycorrhizal (non-AM) and mycorrhizal (AM) roots of improved-1 (I-1) and unimproved-4 (UI-4) soybean genotypes. Significant changes in all the contrasts are highlighted according to the reference box at the right top: Red font indicates a higher level in non-AM I-1 than in UI-4; green font indicates a higher level in non-AM UI-4 than in I-1; red square indicates a higher level in AM I-1 than in UI-4; green frame indicates a higher level in AM UI-4 than in I-1; red arrow indicates a higher level in AM than non-AM I-1 genotype; green arrow indicates a higher level in non-AM than AM I-1 genotype; and orange arrow indicates a higher level in non-AM than AM in UI-4 genotype. Modified from the Kegg database, Madala et al. (2014), Khakimov et al. (2017), and Wang et al. (2017). (PNG 748 kb)

572_2019_909_MOESM2_ESM.tif (1.3 mb)
High Resolution Image (TIF 1343 kb)
572_2019_909_MOESM3_ESM.pdf (12 kb)
Table S1 Arbuscular mycorrhizal fungus colonization of roots of improved (I-1) and unimproved (UI-4) soybean genotype after 20 days of foliar age. (PDF 11 kb)


  1. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, New YorkGoogle Scholar
  2. Amir R (2008) Towards improving methionine content in plants for enhanced nutritional quality. Funct Plant Sci Biotechnol 2:36–46Google Scholar
  3. An G-H, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T, Ezawa T (2010) How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant Soil 327:441–453. CrossRefGoogle Scholar
  4. Bago B, Pfeffer P, Shachar-Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4–8. CrossRefGoogle Scholar
  5. Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507. CrossRefGoogle Scholar
  6. Basu S, Rabara RC, Negi S (2018) AMF: the future prospect for sustainable agriculture. Physiol Mol Plant Pathol 102:36–45. CrossRefGoogle Scholar
  7. Benkeblia N, Shinano T, Osaki M (2007) Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 3:297–305. CrossRefGoogle Scholar
  8. Bhagwat S, Haytowitz DB, Holden JM (2008) USDA database for the isoflavone content of selected foods, release 2.0. Maryland: US Department of Agriculture,
  9. Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992. CrossRefGoogle Scholar
  10. Boldt K, Pörs Y, Haupt B, Bitterlich M, Kühn C, Grimm B, Franken P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol 168:1256–1263. CrossRefGoogle Scholar
  11. Di Rienzo JA, Casanoves F, Balzarini MG, et al (2011) Infostat - software estadístico. Accessed 15 Jan 2019
  12. Dias DA, Hill CB, Jayasinghe NS, Atieno J, Sutton T, Roessner U (2015) Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. J Chromatogr B 1000:1–13. CrossRefGoogle Scholar
  13. Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer Netherlands, Dordrecht, pp 107–129CrossRefGoogle Scholar
  14. Driscoll BT, Finan TM (1993) NAD(+)-dependent malic enzyme of rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol 7:865–873CrossRefGoogle Scholar
  15. Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049. CrossRefGoogle Scholar
  16. Fan Q-J, Liu J-H (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542. CrossRefGoogle Scholar
  17. Fester T, Fetzer I, Buchert S, Lucas R, Rillig MC, Härtig C (2011) Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction. Oecologia 167:913–924. CrossRefGoogle Scholar
  18. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161. CrossRefGoogle Scholar
  19. Gaur AC, Ostwal KP (1972) Influence of phosphate dissolving bacilli on yield & phosphate uptake of wheat crop. Indian J Exp Biol 10:393–394. Accessed 15/01/19
  20. Gerlach N, Schmitz J, Polatajko A et al (2015) An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. Plant Cell Environ 38:1591–1612. CrossRefGoogle Scholar
  21. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. CrossRefGoogle Scholar
  22. Gianinazzi-Pearson V, Maldonado-Mendoza I, Lopez-Meyer M, et al (2006) Arbuscular mycorrhiza. The Medicago truncatula Handbook. Accessed 15/01/19
  23. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. CrossRefGoogle Scholar
  24. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. CrossRefGoogle Scholar
  25. Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776CrossRefGoogle Scholar
  26. Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact MPMI USA 6:643–654. CrossRefGoogle Scholar
  27. Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20. CrossRefGoogle Scholar
  28. Hetrick BAD, GWT W, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518. CrossRefGoogle Scholar
  29. Hill EM, Robinson LA, Abdul-Sada A, Vanbergen AJ, Hodge A, Hartley SE (2018) Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes. J Chem Ecol 44:198–208. CrossRefGoogle Scholar
  30. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. CrossRefGoogle Scholar
  31. Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. International journal of molecular sciences, 17(6):767.
  32. Hu W, Zhang H, Chen H, Tang M (2017) Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment. Mycorrhiza 27:451–463. CrossRefGoogle Scholar
  33. Jacott CN, Murray JD, Ridout CJ (2017) Trade-offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding. Agronomy 7:75. CrossRefGoogle Scholar
  34. Jorge TF, Mata AT, António C (2016) Mass spectrometry as a quantitative tool in plant metabolomics. Philos Transact A Math Phys Eng Sci 374:20150370. CrossRefGoogle Scholar
  35. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. CrossRefGoogle Scholar
  36. Khakimov B, Rasmussen MA, Kannangara RM, Jespersen BM, Munck L, Engelsen SB (2017) From metabolome to phenotype: GC-MS metabolomics of developing mutant barley seeds reveals effects of growth, temperature and genotype. Sci Rep 7:8195. CrossRefGoogle Scholar
  37. Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:949–958. CrossRefGoogle Scholar
  38. Khalil S, Loynachan TE, Tabatabai MA (1999) Plant determinants of mycorrhizal dependency in soybean. Agron J 91:135–141. CrossRefGoogle Scholar
  39. Konvalinková T, Jansa J (2016) Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Frontiers in Plant Science, 7, 782.
  40. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinforma Oxf Engl 21:1635–1638. CrossRefGoogle Scholar
  41. Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots ofMedicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339. CrossRefGoogle Scholar
  42. Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231–250. CrossRefGoogle Scholar
  43. Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191. CrossRefGoogle Scholar
  44. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396. CrossRefGoogle Scholar
  45. Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329–340. CrossRefGoogle Scholar
  46. Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinforma Oxf Engl 24:732–737. CrossRefGoogle Scholar
  47. Madala NE, Piater LA, Steenkamp PA, Dubery IA (2014) Multivariate statistical models of metabolomic data reveals different metabolite distribution patterns in isonitrosoacetophenone-elicited Nicotiana tabacum and Sorghum bicolor cells. SpringerPlus 3:254. CrossRefGoogle Scholar
  48. Mäder P, Vierheilig H, Streitwolf-Engel R et al (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161. CrossRefGoogle Scholar
  49. Martínez Camacho JL, Calderón Salinas JV (2005) La función y transporte del ácido L-málico en plantas: un dicarboxílico estrella. Rev Educ Bioquímica 24:39–46Google Scholar
  50. Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R (2018) Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol 218:322–334. CrossRefGoogle Scholar
  51. McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501. CrossRefGoogle Scholar
  52. Nanjareddy K, Blanco L, Arthikala M-K, Affantrange XA, Sánchez F, Lara M (2014) Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.). J Integr Plant Biol 56:281–298. CrossRefGoogle Scholar
  53. Nijjer S, Rogers WE, Siemann E (2010) The impacts of fertilization on mycorrhizal production and Investment in Western Gulf Coast Grasslands. Am Midl Nat 163:124–134. CrossRefGoogle Scholar
  54. Olsina C, Cairo C, Pessino S (2012) Desarrollo de una base de datos genéticos para la caracterización del germoplasma argentino de soja. Rev Investig Fac Cienc Agrar - UNR 0:023–039. Google Scholar
  55. Oms-Oliu G, Hertog MLATM, Van de Poel B et al (2011) Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol Technol 62:7–16. CrossRefGoogle Scholar
  56. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644. CrossRefGoogle Scholar
  57. Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553. CrossRefGoogle Scholar
  58. Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750. CrossRefGoogle Scholar
  59. Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M, Jansa J (2017) Arbuscular mycorrhiza stimulates biological nitrogen fixation in two medicago spp. through improved phosphorus acquisition. Front Plant Sci 8:8. CrossRefGoogle Scholar
  60. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. CrossRefGoogle Scholar
  61. Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99. CrossRefGoogle Scholar
  62. Rosendahl L, Vance CP, Pedersen WB (1990) Products of dark CO2 fixation in pea root nodules support bacteroid metabolism 1. Plant Physiol 93:12–19CrossRefGoogle Scholar
  63. Saia S, Ruisi P, Fileccia V, di Miceli G, Amato G, Martinelli F (2015) Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One 10:10. CrossRefGoogle Scholar
  64. Saito M (1997) Regulation of arbuscular mycorrhiza symbiosis : hyphal growth in host roots and nutrient exchange. Jpn Agric Res Q 31:179–183Google Scholar
  65. Salloum MS, Guzzo MC, Velazquez MS, Sagadin MB, Luna CM (2016) Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars. Can J Microbiol 62:1034–1040. CrossRefGoogle Scholar
  66. Salloum MS, Menduni MF, Luna CM (2017) A differential capacity of arbuscular mycorrhizal fungal colonization under well-watered conditions and its relationship with drought stress mitigation in unimproved vs. improved soybean genotypes. Botany 96:135–144. CrossRefGoogle Scholar
  67. Salloum MS, Menduni MF, Benavides MP, Larrauri M, Luna CM, Silvente S (2018) Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis 76:265–275. CrossRefGoogle Scholar
  68. Salvioli A, Bonfante P (2013) Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci Int J Exp Plant Biol 203–204:107–114. Google Scholar
  69. Scervino JM, Ponce MA, Mónica ID et al (2009) Development of arbuscular mycorrhizal fungi in the presence of different patterns of Trifolium repens shoot flavonoids. Rev Cienc Suelo Nutr Veg 9:102–115Google Scholar
  70. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454. CrossRefGoogle Scholar
  71. Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146. CrossRefGoogle Scholar
  72. Schmidt H, Günther C, Weber M, Spörlein C, Loscher S, Böttcher C, Schobert R, Clemens S (2014) Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS One 9:e102444. CrossRefGoogle Scholar
  73. Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal Leek. Plant Physiol 108(1):7–15. CrossRefGoogle Scholar
  74. Shacher-Hill Y, Pfeffer PE (1996) Plant/microbe interactions. In: Nuclear magnetic resonance in plant biology. American Society of Plant Physiologists, pp 77–140Google Scholar
  75. Smith SE, Read D (2008) 5 - mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Smith SE, Read D (eds) Mycorrhizal Symbiosis, Third edn. Academic Press, London, pp 145–1VIGoogle Scholar
  76. Smith FA, Smith SE (2015) How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. New Phytol 205:1381–1384. CrossRefGoogle Scholar
  77. Solaimanand MZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538. CrossRefGoogle Scholar
  78. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. CrossRefGoogle Scholar
  79. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269CrossRefGoogle Scholar
  80. Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24:429–438. CrossRefGoogle Scholar
  81. Stumpe M, Carsjens J-G, Stenzel I, Göbel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66:781–791. CrossRefGoogle Scholar
  82. Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668. CrossRefGoogle Scholar
  83. Tian H, Lam SM, Shui G (2016) Metabolomics, a powerful tool for agricultural research. International journal of molecular sciences, 17(11):1871.
  84. Trépanier M, Bécard G, Moutoglis P et al (2005) Dependence of arbuscular-mycorrhizal Fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347. CrossRefGoogle Scholar
  85. Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S, Shen QJ, Morandi D, Bücking H, Shulaev V, Rushton PJ (2016) A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics 17:102. CrossRefGoogle Scholar
  86. Turrini A, Giordani T, Avio L, Natali L, Giovannetti M, Cavallini A (2016) Large variation in mycorrhizal colonization among wild accessions, cultivars, and inbreds of sunflower (Helianthus annuus L.). Euphytica 207:331–342. CrossRefGoogle Scholar
  87. Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10:1147–1158. CrossRefGoogle Scholar
  88. Williamson JD, Jennings DB, Guo W-W, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress, and fungal resistance: polyols—multifunctional plant protection? J Am Soc Hortic Sci 127:467–473CrossRefGoogle Scholar
  89. Zhang J-Y, Cruz DE Carvalho MH, Torres-Jerez I et al (2014) Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ 37:2553–2576. CrossRefGoogle Scholar
  90. Zhu Y-G, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),Instituto Nacional de Tecnología Agropecuaria (INTA)CórdobaArgentina
  2. 2.Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA)HurlinghamArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fondo para la Investigación Científica y Tecnológica (FONCyT), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),Instituto Nacional de Tecnología Agropecuaria (INTA),CórdobaArgentina
  4. 4.Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA)Universidad Nacional de Chilecito (UNdeC)La RiojaArgentina
  5. 5.Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) Ciudad UniversitariaBuenos AiresArgentina
  6. 6.Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations