Advertisement

Mycorrhiza

, Volume 29, Issue 1, pp 39–49 | Cite as

Can arbuscular mycorrhizal fungi from non-invaded montane ecosystems facilitate the growth of alien trees?

  • Carlos UrcelayEmail author
  • Silvana Longo
  • József Geml
  • Paula A. Tecco
Original Article
  • 143 Downloads

Abstract

It is generally assumed that recruitment and expansion of alien species along elevation gradients are constrained by climate. But, if plants are not fully constrained by climate, their expansion could be facilitated or hindered by other factors such as biotic interactions. Here, we assessed the composition of arbuscular mycorrhizal fungi (AMF) in soils along an elevation gradient (i.e. 900 m, 1600 m, 2200 m and 2700 m a.s.l.) through a fungal DNA meta-barcoding approach. In addition, we studied in the greenhouse the effects of AMF on growth and phosphorous (P) nutrition of seedlings of the alien trees Gleditsia triacanthos, Ligustrum lucidum and Pyracantha angustifolia cultivated in soils from those elevations, spanning the elevation at which they already form monospecific stands (below 1450 m a.s.l.) and higher elevations, above their current range of distribution in montane ecosystems of Central Argentina. For comparison, we also included in the experiment the dominant native tree Lithraea molleoides that historically occurs below 1300 m a.s.l. Arbuscular mycorrhizal fungal community composition showed strong community turnover with increasing elevation. The effects of these AMF communities on plant growth and nutrition differed among native and alien trees. While P nutrition in alien species’ seedlings was generally enhanced by AMF along the whole gradient, the native species benefited only from AMF that occur in soils from the elevation corresponding to its current altitudinal range of distribution. These results suggest that AMF might foster upper range expansion of these invasive trees over non-invaded higher elevations.

Keywords

Belowground microorganisms DNA meta-barcoding Invasion ecology Montane ecosystems 

Notes

Acknowledgements

The authors wish to acknowledge the assistance of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional de Córdoba (U.N.C.), both of which have provided facilities used for this study. The soil DNA meta-barcoding work was sponsored by a Naturalis Research Initiative grant awarded to J. Geml. We also thank the land owners (J. Astrada, J.C., M. Chuit and R. Olguín) who generously provided access to the study site and allowed us to establish long-term exclosures in their properties and M. Cabido and M. Giorgis for the floristic relevés. C.U., S.L. and P.A.T. are the researchers of CONICET and professors at the U.N.C. David Janos and the two anonymous reviewers provided critical comments and suggestions that improved the quality of this manuscript.

Funding information

This research program is funded by the Secretaría de Ciencia y Tecnología - Universidad Nacional de Córdoba (Secyt) (Universidad Nacional de Córdoba) and the Ministerio de Ciencia y Tecnología de Córdoba.

Supplementary material

572_2018_874_MOESM1_ESM.docx (67 kb)
ESM 1 (DOCX 67 kb)

References

  1. Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, MIREN Consortium (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci 108:656–661CrossRefGoogle Scholar
  2. Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY (2014) Phylogenetic conservatism in plant -soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621CrossRefGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46Google Scholar
  4. Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14:221–228CrossRefGoogle Scholar
  5. Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Willerslev E, Gussarova G, Taberlet P, Brochman C (2013) High paleodiversity of fungi revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189CrossRefGoogle Scholar
  6. Berruti A, Desiro A, Visentin S, Zecca O, Bonfante P (2017) ITS fungal barcoding primers versus 18S AMF-specific primers reveal similar AMF-based diversity patterns in roots and soils of three mountain vineyards. Environ Microbiol Rep 9:658–667CrossRefGoogle Scholar
  7. Bjorbækmo MFM, Carlsen T, Brysting A, Vrålstad T, Høiland K, Ugland KI, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10:244CrossRefGoogle Scholar
  8. Brown C, Vellend M (2014) Non-climatic constraints on upper elevational plant range expansion under climate change. Proc R Soc B 281:20141779CrossRefGoogle Scholar
  9. Bunn RA, Ramsey PW, Lekberg Y (2015) Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. J Ecol 103:1547–1556CrossRefGoogle Scholar
  10. Cabrera A (1976) Regiones fitogeográficas argentinas. In: Enciclopedia Argentina de Agricultura y Jardinería, 2nd edn. ACME, Buenos AiresGoogle Scholar
  11. Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011) Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92:1027–1035CrossRefGoogle Scholar
  12. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Kooren K, Kochar M, Ndiaye C, Pärtel M, Reier Ü, Sacks Ü, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973CrossRefGoogle Scholar
  13. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013). Infostat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina Google Scholar
  14. Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau ML, Grelet G, Hulme PE, Klironomos J, Makiola A, Nuñez M, Pringle A, Thrall PH, Tourtellot SG, Waller L, Williams NM (2017) The emerging science of linked plant-fungal invasions. New Phytol 215:1314–1332CrossRefGoogle Scholar
  15. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  16. Furey C, Tecco P, Perez-Harguindeguy N, Giorgis MA, Grossi M (2014) The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of Central Argentina. Acta Oecol 54:13–20CrossRefGoogle Scholar
  17. Geml J (2017) Altitudinal gradients in mycorrhizal symbioses—the current state of knowledge on how richness and community structure change with elevation. In: Tedersoo L (ed) Ecological studies: biogeography of mycorrhizal symbioses. Springer, Berlin, pp 107–123CrossRefGoogle Scholar
  18. Geml J, Laursen GA, Herriott I, McFarland JM, Booth MG, Lennon N, Nusbaum C, Taylor DL (2010) Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus Russula Pers. (Russulales; Basidiomycota). New Phytol 187:494–507CrossRefGoogle Scholar
  19. Giorgis MA, Tecco PA, Cingolani AM, Renison D, Marcora P, Paiaro V (2011a) Factors associated with woody alien species distribution in a newly invaded mountain system of Central Argentina. Biol Invasions 13:1423–1434CrossRefGoogle Scholar
  20. Giorgis MA, Cingolani AM, Chiarini F, Chiapella J, Barboza G, Ariza Espinar L, Morero R, Gurvich DE, Tecco PA, Subils R, Cabido M (2011b) Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina. Kurtziana 36:9–43Google Scholar
  21. Giorgis MA, Cingolani AM, Tecco PA, Cabido M, Poca M, von Wehrden H (2016) Testing alien plant distribution and habitat invasibility in mountain ecosystems: growth form matters. Biol Invasions 18:2017–2028CrossRefGoogle Scholar
  22. Giorgis MA, Cingolani AM, Gurvich DE, Tecco PA, Chiapella J, Chiarini F, Cabido M (2017) Changes in floristic composition and physiognomy are decoupled along elevation gradients in Central Argentina. Appl Veg Sci 20:558–571CrossRefGoogle Scholar
  23. Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162CrossRefGoogle Scholar
  24. Hazard C, Gosling P, van der Gast CJ, Mitchell DT, Doohan FN, Bending G (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508CrossRefGoogle Scholar
  25. Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384CrossRefGoogle Scholar
  26. Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407CrossRefGoogle Scholar
  27. Hoeksema JD, Bever JD, Chakraborty S, Chaudhary VB, Gardes M, Gehring CA, Hart MM, Housworth EA, Kaonongbua W, Klironomos JN, Lajeunesse MJ, Meadow J, Milligan BG, Piculell BJ, Pringle A, Rúa MA, Umbanhowar J, Viechtbauer W, Wang YW, Wilson GWT, Zee PC (2018) Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun Biol 1:116.  https://doi.org/10.1038/s42003-018-0120-9 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677CrossRefGoogle Scholar
  29. Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135CrossRefGoogle Scholar
  30. Jeschke JM, Aparicio LG, Haider S, Heger T, Lortie CJ, Pyšek P, Strayer DL (2012) Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14:1-20Google Scholar
  31. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303CrossRefGoogle Scholar
  32. Kivlin SN, Lynn JS, Kazenel MR, Beals KK, Rudgers JA (2017) Biogeography of plant-associated fungal symbionts in mountain ecosystems: a meta-analysis. Divers Distrib 23:1067–1077CrossRefGoogle Scholar
  33. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70CrossRefGoogle Scholar
  34. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  35. Koide RT, Li M (1989) Appropriate controls for vesicular-arbuscular mycorrhiza research. New Phytol 111:35–44CrossRefGoogle Scholar
  36. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277CrossRefGoogle Scholar
  37. Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678CrossRefGoogle Scholar
  38. Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn RA, Larkin BG, Öpik M (2018) More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol.  https://doi.org/10.1111/nph.15035
  39. Marcora P, Hensen I, Renison D, Seltmann P, Wesche K (2008) The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Divers Distrib 14:630–636CrossRefGoogle Scholar
  40. Marcora PI, Ferreras AE, Zeballos SR, Funes G, Longo S, Urcelay C, Tecco PA (2018) Context-dependent effects of fire and browsing on woody alien invasion in mountain ecosystems. Oecologia 188:479–490.  https://doi.org/10.1007/s00442-018-4227-y CrossRefPubMedGoogle Scholar
  41. McCune BP, Grace J (2002) Analysis of ecological communities. MjM Software, Gleneden BeachGoogle Scholar
  42. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  43. Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, Kühn I, Kunin WE, Metsis M, Rortais A, Vanatoa A, Vanatoa E, Stout JC, Truusa M, Westphal C, Zobel M, Walther GR (2011) Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr 38:1305–1317CrossRefGoogle Scholar
  44. Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Leff JW, Salinas N, Silman M, Kruuk L, Meir P (2018) Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology. Accepted author manuscript 99:2455–2466.  https://doi.org/10.1002/ecy.2482 CrossRefPubMedGoogle Scholar
  45. Nuñez MA, Dickie IA (2014) Invasive belowground mutualists of woody plants. Biol Invasions 16:645–661CrossRefGoogle Scholar
  46. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437CrossRefGoogle Scholar
  47. Pellissier L, Pinto-Figueroa E, Niculita-Hirzel H, Moora M, Villard L, Goudét J, Guex N, Pagni M, Xenarios L, Sanders I, Guisan A (2013) Plant species distributions along environmental gradients: do belowground interactions with fungi matter? Front Plant Sci 500.  https://doi.org/10.3389/fpls.2013.00500
  48. Perez M, Urcelay C (2009) Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting plant functional types. Mycorrhiza 19:517–523CrossRefGoogle Scholar
  49. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-roject.org
  50. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457CrossRefGoogle Scholar
  51. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93CrossRefGoogle Scholar
  52. Siles JA, Cajthaml T, Filipová A, Minerbi S, Margesin R (2017) Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol Biochem 112:1–13CrossRefGoogle Scholar
  53. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, CambridgeGoogle Scholar
  54. Tecco PA, Urcelay C, Díaz S, Cabido M, Perez-Harguindeguy N (2013) Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Aust Ecol 38:443–451CrossRefGoogle Scholar
  55. Tecco PA, Pais-Bosch AI, Funes G, Marcora P, Zeballos SR, Cabido M, Urcelay C (2016) Mountain invasions on the way: are there climatic constraints for the expansion of alien woody species along an elevation gradient in Argentina? J Plant Ecol 9:380–392CrossRefGoogle Scholar
  56. Tomiolo S, Ward D (2018) Species migrations and range shifts: a synthesis of causes and consequences. Persp Plant Ecol Evol Syst 33:62–77CrossRefGoogle Scholar
  57. Urcelay C, Longo S, Geml J, Tecco PA, Nouhra E (2017) Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. Fungal Ecol 25:50–58CrossRefGoogle Scholar
  58. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar
  59. Xu X, Chen C, Zhang Z, Sun Z, Chen Y, Jiang J, Shen Z (2017) The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Sci Rep 7:45134.  https://doi.org/10.1038/srep45134 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yang H, Zang Y, Yuan Y, Tang J, Chen X (2012) Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50CrossRefGoogle Scholar
  61. Zeballos SR, Tecco PA, Cabido M, Gurvich DE (2014) Composición de especies leñosas en comunidades invadidas en montañas del centro de Argentina: su relación con factores ambientales locales. Rev Biol Trop 62:1673–1681CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Urcelay
    • 1
    • 2
    Email author
  • Silvana Longo
    • 1
    • 2
  • József Geml
    • 3
  • Paula A. Tecco
    • 1
    • 2
  1. 1.Instituto Multidisciplinario de Biología Vegetal (CONICET)Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Naturalis Biodiversity CenterLeidenThe Netherlands

Personalised recommendations