Advertisement

Mycorrhiza

, Volume 28, Issue 7, pp 691–701 | Cite as

Mycelium of Terfezia claveryi as inoculum source to produce desert truffle mycorrhizal plants

  • Francisco Arenas
  • Alfonso Navarro-Ródenas
  • Daniel Chávez
  • Almudena Gutiérrez
  • Manuela Pérez-Gilabert
  • Asunción Morte
Original Article

Abstract

Terfezia claveryi Chatin was the first desert truffle species to be cultivated, the mycorrhizal plants being successfully produced by using both desert truffle spores and mycelia. However, it is more advisable to use mycelium than spores whenever possible and profitable. Given the low yields of mycelia obtained using traditional culture methods of this truffle, the medium composition was modified in an attempt to determine its nutritional requirements. For this, an assay involving response surface methodology was performed using Box-Behnken design to find the optimal parameters for the high production of mycelial biomass. The best results were obtained with glucose as carbon source, buffering the pH at 5 during culture, adding a pool of vitamins, and adjusting the optimal concentrations of carbon and nitrogen sources of the MMN medium. Biomass production increased from 0.3 to 3 g L−1 dry weight and productivity increased from 10.7 to 95.8 mg L−1 day−1 dry weight. The produced mycelium was able to colonize Helianthemum roots efficiently, providing more than 50% ectomycorrhizal colonization.

Keywords

Mycelial biomass Box-Behnken design Response surface methodology Desert truffle Terfezia claveryi 

Notes

Acknowledgements

This work was supported by projects 19484/PI/14 (Fundación Séneca of Region of Murcia, FEDER, Spain) and CGL2016-78946-R (AEI-FEDER, UE). F. Arenas thanks the Ministerio de Economía y Competitividad (MINECO) for financial resources from the Youth Employment Initiative (IEJ) and the European Social Fund (FSE) (PEJ-2014-A-83659). D. Chávez would like to thank the Chilean National Council for Science and Technology CONICYT 21110038 for the assigned postgraduate grant. A. Navarro-Ródenas is grateful to the University of Murcia for a postdoctoral contract.

Supplementary material

572_2018_867_MOESM1_ESM.jpg (61 kb)
Fig. S1 Summary of the different experiments performed. (JPG 61 kb)
572_2018_867_MOESM2_ESM.docx (91 kb)
Fig. S2 Parameter profile during mycelial growth of Terfezia claveryi in bioreactor. Symbols for the parameters used: pH (short dash), mL of NaOH added (dotted) and dissolved oxygen (%DO) (solid). (DOCX 90 kb)
572_2018_867_MOESM3_ESM.docx (14 kb)
Table S1 (DOCX 14 kb)
572_2018_867_MOESM4_ESM.docx (13 kb)
Table S2 (DOCX 13 kb)
572_2018_867_MOESM5_ESM.docx (13 kb)
Table S3 (DOCX 13 kb)
572_2018_867_MOESM6_ESM.docx (13 kb)
Table S4 (DOCX 13 kb)

References

  1. Bécard G, Fortin J (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218.  https://doi.org/10.1111/j.1469-8137.1988.tb03698.x CrossRefGoogle Scholar
  2. Bordallo JJ, Rodríguez A, Muñoz-Mohedano JM, Suz LM, Honrubia M, Morte A (2013) Five new Terfezia species from the Iberian Peninsula. Mycotaxon 124:189–208.  https://doi.org/10.5248/124.189 CrossRefGoogle Scholar
  3. Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475CrossRefGoogle Scholar
  4. Carrillo C, Díaz G, Honrubia M (2004) Improving the production of ectomycorrhizal fungus mycelium in a bioreactor by measuring the ergosterol content. Eng Life Sci 4:43–45.  https://doi.org/10.1002/elsc.200420003 CrossRefGoogle Scholar
  5. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116.  https://doi.org/10.1007/BF02670468 CrossRefGoogle Scholar
  6. Chávez D, Machuca Á, Aguirre C, Palfner G (2014) Optimización del crecimiento miceliar de los hongos ectomicorrízicos Lactarius quieticolor y Rhizopogon roseolus utilizando metodología de superficie de respuesta. XXII Congreso Latinoamericano de Microbiología-ALAM, Cartagena de Indias, Colombia, 4–8 noviembre 2014Google Scholar
  7. Cochrane VW (1958) Physiology of fungi. Wiley, LondonCrossRefGoogle Scholar
  8. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, da Silva EGP, Protugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186.  https://doi.org/10.1016/j.aca.2007.07.011 CrossRefPubMedGoogle Scholar
  9. Garcia K, Delaux PM, Cope KR, Ané JM (2015) Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol 208:79–87.  https://doi.org/10.1111/nph.13423 CrossRefPubMedGoogle Scholar
  10. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500.  https://doi.org/10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  11. Griffin DH (1996) Fungal physiology. Wiley, LondonGoogle Scholar
  12. Gutiérrez A, Morte A, Honrubia M (2003) Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza 13:299–307.  https://doi.org/10.1007/s00572-003-0236-7 CrossRefPubMedGoogle Scholar
  13. Honrubia M, Andrino A, Morte A (2014) Domestication: preparation and maintenance of plots. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles—phylogeny, physiology, distribution and domestication. Soil biology, vol 38. Springer, Berlin, pp 367–387.  https://doi.org/10.1007/978-3-642-40096-4_22 Google Scholar
  14. Iotti M, Piattoni F, Leonardi P, Hall IR, Zambonelli A (2016) First evidence for truffle production from plants inoculated with mycelial pure cultures. Mycorrhiza 26:793–798.  https://doi.org/10.1007/s00572-016-0703-6 CrossRefPubMedGoogle Scholar
  15. Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Kumar S, Mishra A (2017) Optimization of laccase production from WRF-1 on groundnut shell and cyanobacterial biomass: by application of Box-Behnken experimental design. J Microbiol Biotechnol Res 1:33–53Google Scholar
  17. Liu G-Q, Wang X-L (2007) Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl Microbiol Biotechnol 74:78–83.  https://doi.org/10.1007/s00253-006-0661-6 CrossRefPubMedGoogle Scholar
  18. Liu R-S, Li D-S, Li H-M, Tang Y-J (2008) Response surface modeling the significance of nitrogen source on the cell growth and Tuber polysaccharides production by submerged cultivation of Chinese truffle Tuber sinense. Process Biochem 43:868–876.  https://doi.org/10.1016/j.procbio.2008.04.009 CrossRefGoogle Scholar
  19. Liu Q-N, Liu R-S, Wang Y-H, Mi Z-Y, Li D-S, Zhong J-J, Tang Y-J (2009) Fed-batch fermentation of Tuber melanosporum for the hyperproduction of mycelia and bioactive Tuber polysaccharides. Bioresour Technol 100:3644–3649.  https://doi.org/10.1016/j.biortech.2009.02.037 CrossRefPubMedGoogle Scholar
  20. López AMT, Díaz JCQ, Garcés LA (2011) Efecto de nutrientes sobre la producción de biomasa del hongo medicinal Ganoderma lucidum. Rev Colomb Biotecnol 13:103–109Google Scholar
  21. López-Nicolás JM, Pérez-Gilabert M, García-Carmona F, Lozano-Carrillo MC, Morte A (2013) Mycelium growth stimulation of the desert truffle Terfezia claveryi chatin by β-cyclodextrin. Biotechnol Prog 29:1558–1564.  https://doi.org/10.1002/btpr.1791 CrossRefPubMedGoogle Scholar
  22. Lott JA, Turner K (1975) Evaluation of Trinder’s glucose oxidase method for measuring glucose in serum and urine. Clin Chem 21:1754–1760PubMedGoogle Scholar
  23. Mao X-B, Eksriwong T, Chauvatcharin S, Zhong J-J (2005) Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem 40:1667–1672.  https://doi.org/10.1016/j.procbio.2004.06.046 CrossRefGoogle Scholar
  24. Marx D (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  25. Morte A, Honrubia M (1994) Método para la micorrización in vitro de plantas micropropagadas de Helianthemum con Terfezia claveryi. Patent 9402430, University of Murcia, SpainGoogle Scholar
  26. Morte A, Honrubia M (1997) Micropropagation of Helianthemum almeriense. In: Bajaj YPS (ed) High-tech and micropropagation VI, vol 40. Springer, Berlin, pp 163–177.  https://doi.org/10.1007/978-3-662-03354-8_12 CrossRefGoogle Scholar
  27. Morte A, Honrubia M (2009) Biotecnology for the industrial production of ectomycorrhizal inoculum and mycorrhizal plants. In: Ashok KC, Varma A (eds) A textbook of molecular biotechnology. pp 691–704Google Scholar
  28. Morte A, Dieste C, Díaz G, Gutiérrez A, Navarro A, Honrubia M (2004) Production of Terfezia olbiensis mycelial inoculum in a bioreactor. Act 1er Symp Champignons Hypoges du Basin Mediterraneen, Rabat, Morocco, pp 146–149Google Scholar
  29. Morte A, Honrubia M, Gutiérrez A (2008) Biotechnology and cultivation of desert truffles. In: Varma A (ed) Mycorrhiza: state of the art genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 467–483CrossRefGoogle Scholar
  30. Morte A, Zamora M, Gutiérrez A, Honrubia M (2009) Desert truffle cultivation in semiarid Mediterranean areas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas-functional processes and ecological impact. Springer, Berlin, pp 221–233CrossRefGoogle Scholar
  31. Morte A, Andrino A, Honrubia M, Navarro-Ródenas A (2012) Terfezia cultivation in arid and semiarid soils. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms. Soil biology, vol 34. Springer, Berlin, pp 241–263.  https://doi.org/10.1007/978-3-642-33823-6_14 Google Scholar
  32. Morte A, Pérez-Gilabert M, Gutiérrez A, Arenas F, Marqués-Gálvez JE, Bordallo JJ, Rodríguez A, Berná LM, Lozano-Carrillo C, Navarro-Ródenas A (2017) Basic and applied research for desert truffle cultivation. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—eco-physiology, secondary metabolites, Nanomaterials. Springer, Berlin, pp 23–42.  https://doi.org/10.1007/978-3-319-57849-1_2 CrossRefGoogle Scholar
  33. Moser M (1960) Die Gattung Phlegmacium, S. 59, J Klinkhardt, Bad HeilbrunnGoogle Scholar
  34. Natrella M (2010) NIST/SEMATECH e-handbook of statistical methods. In: Croarkin C, Tobias P, Filliben JJ, Hembree B, Guthrie W, Trutna L, Prins J (eds) Engineering statistics handbook. http://www.itl.nist.gov/div898/handbook/
  35. Navarro-Ródenas A, Lozano-Carrillo MC, Pérez-Gilabert M, Morte A (2011) Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles. Mycorrhiza 21:247–253.  https://doi.org/10.1007/s00572-010-0329-z CrossRefPubMedGoogle Scholar
  36. Navarro-Ródenas A, Pérez-Gilabert M, Torrente P, Morte A (2012) The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza 22:565–575.  https://doi.org/10.1007/s00572-012-0434-2 CrossRefPubMedGoogle Scholar
  37. Navarro-Ródenas A, Berná LM, Lozano-Carrillo C, Andrino A, Morte A (2016) Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza 26:769–779.  https://doi.org/10.1007/s00572-016-0711-6 CrossRefPubMedGoogle Scholar
  38. Pradella J, Zuccolo M, Reis Lopes S, Simoes Oliveira M (1991) Pisolithus tinctorius vegetative mycelia production: effects of nitrogen sources and cultivation in stirred tank fermenter. Rev Microbiol 22:7–11Google Scholar
  39. Rossi MJ, Oliveira VL (2011) Growth of the ectomycorrhizal fungus Pisolithus microcarpus in different nutritional conditions. Braz J Microbiol 42:624–632.  https://doi.org/10.1590/S1517-83822011000200027 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rossi M, Souza J, Oliveira V (2002) Inoculum production of the ectomycorrhizal fungus Pisolithus microcarpus in an airlift bioreactor. Appl Microbiol Biotechnol 59:175–181.  https://doi.org/10.1007/s00253-002-0999-3 CrossRefPubMedGoogle Scholar
  41. Rossi MJ, Furigo A, Oliveira VL (2007) Inoculant production of ectomycorrhizal fungi by solid and submerged fermentations. Food Technol Biotechnol 45:277Google Scholar
  42. Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, Paolocci F (2011) Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189:710–722.  https://doi.org/10.1111/j.1469-8137.2010.03492.x CrossRefPubMedGoogle Scholar
  43. Sánchez F, Honrubia M, Torres P (2001) Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Cryptogam Mycol 22:243–258CrossRefGoogle Scholar
  44. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  45. Stanbury PF, Whitaker A, Hall SJ (2013) Culture presevation and inoculum development. In: Principles of fermentation technology. Elsevier, pp 335–399Google Scholar
  46. Trinder P (1969) Determination of glucose concentration in the blood. Ann Clin Biochem 6:24–27CrossRefGoogle Scholar
  47. Wang F, Zhang J, Hao L, Jia S, Ba J, Niu S (2012) Optimization of submerged culture conditions for mycelial growth and extracellular polysaccharide production by Coriolus versiolor. J Bioprocess Biotech 2:124–129CrossRefGoogle Scholar
  48. Wei Z-H, Duan Y-Y, Qian Y-Q, Guo X-F, Li Y-J, Jin S-H, Zhou Z-X, Shan S-Y, Wang C-R, Chen X-J, Zheng Y, Zhong J-J (2014) Screening of Ganoderma strains with high polysaccharides and ganoderic acid contents and optimization of the fermentation medium by statistical methods. Bioprocess Biosyst Eng 37:1789–1797.  https://doi.org/10.1007/s00449-014-1152-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biología Vegetal, Facultad de BiologíaUniversidad de MurciaMurciaSpain
  2. 2.Departamento de Ciencias y Tecnología Vegetal, Campus Los ÁngelesUniversidad de Concepción, Escuela de Ciencias y TecnologíasLos AngelesChile
  3. 3.Departamento de Bioquímica y Biología Molecular A, Facultad de VeterinariaUniversidad de MurciaMurciaSpain

Personalised recommendations