Advertisement

Mycorrhiza

, Volume 28, Issue 5–6, pp 451–463 | Cite as

Plant host habitat and root exudates shape fungal diversity

  • Mylène Hugoni
  • Patricia Luis
  • Julien Guyonnet
  • Feth el Zahar Haichar
Original Article

Abstract

The rhizospheric microbiome is clearly affected by plant species and certain of their functional traits. These functional traits allow plants to adapt to their environmental conditions by acquiring or conserving nutrients, thus defining different ecological resource-use plant strategies. In the present study, we investigated whether plants with one of the two nutrient-use strategies (conservative versus exploitative) could influence fungal communities involved in soil organic matter degradation and root exudate assimilation, as well as those colonizing root tissues. We applied a DNA-based, stable-isotope probing (DNA-SIP) approach to four grass species distributed along a gradient of plant nutrient resource strategies, ranging from conservative to exploitative species, and analyzed their associated mycobiota composition using a fungal internal transcribed spacer (ITS) and Glomeromycotina 18S rRNA gene metabarcoding approach. Our results demonstrated that fungal taxa associated with exploitative and conservative plants could be separated into two general categories according to their location: generalists, which are broadly distributed among plants from each strategy and represent the core mycobiota of soil organic matter degraders, root exudate consumers in the root-adhering soil, and root colonizers; and specialists, which are locally abundant in one species and more specifically involved in soil organic matter degradation or root exudate assimilation on the root-adhering soil and the root tissues. Interestingly, for arbuscular mycorrhizal fungi analysis, all plant roots were mainly colonized by Glomus species, whereas an increased diversity of Glomeromycotina genera was observed for the exploitative plant species Dactylis glomerata.

Keywords

Plant nutrient-use strategies Rhizosphere Root exudates Active fungal communities Microbiota Stable-isotope probing 

Notes

Acknowledgments

We thank CNRS EC2CO research programs for providing funding to the project “RhizoDen” and “CaIMan.” We thank the “Serre et chambres climatiques” platform (Université Lyon1, FR41) for plant growing and Elise Lacroix for her help. We thank M. Guegan and A. Dubost for their help on statistical and bioinformatic analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46.  https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x CrossRefGoogle Scholar
  3. Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246.  https://doi.org/10.1007/s00572-008-0215-0 CrossRefPubMedGoogle Scholar
  4. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266.  https://doi.org/10.1146/annurev.arplant.57.032905.105159 CrossRefPubMedGoogle Scholar
  5. Baldrian P, Voříšková J, Dobiášová P, Merhautová V, Lisá L, Valášková V (2011) Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338:111–125.  https://doi.org/10.1007/s11104-010-0324-3 CrossRefGoogle Scholar
  6. Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41:262–275.  https://doi.org/10.1016/j.soilbio.2008.10.024 CrossRefGoogle Scholar
  7. Beattie GA (2018) Metabolic coupling on roots. Nat Microbiol 3:396–397.  https://doi.org/10.1038/s41564-018-0139-1 CrossRefPubMedGoogle Scholar
  8. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59.  https://doi.org/10.1038/nmeth.2276 CrossRefPubMedGoogle Scholar
  9. Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fertil Soils 42:286–298.  https://doi.org/10.1007/s00374-005-0026-9 CrossRefGoogle Scholar
  10. Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43:1–8.  https://doi.org/10.1016/j.soilbio.2010.10.001 CrossRefGoogle Scholar
  11. Buée M, Boer WD, Martin F, Overbeek L van, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212CrossRefGoogle Scholar
  12. Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800CrossRefGoogle Scholar
  13. Cai L, Jeewon R, Hyde KD (2005) Phylogenetic evaluation and taxonomic revision of Schizothecium based on ribosomal DNA and protein coding genes. Fungal Divers 19:1–21Google Scholar
  14. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421.  https://doi.org/10.1186/1471-2105-10-421 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cantarel AAM, Pommier T, Desclos-Theveniau M, Diquélou S, Dumont M, Grassein F, Kastl EM, Grigulis K, Laîné P, Lavorel S, Lemauviel-Lavenant S, Personeni E, Schloter M, Poly F (2015) Using plant traits to explain plant–microbe relationships involved in nitrogen acquisition. Ecology 96:788–799.  https://doi.org/10.1890/13-2107.1 CrossRefPubMedGoogle Scholar
  16. Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491.  https://doi.org/10.1016/j.tplants.2013.05.001 CrossRefPubMedGoogle Scholar
  17. Chen L, Xu J, Feng Y, Wang J, Yu Y, Brookes PC (2015) Responses of soil microeukaryotic communities to short-term fumigation-incubation revealed by MiSeq amplicon sequencing. Front Microbiol 6:1149.  https://doi.org/10.3389/fmicb.2015.01149
  18. Dai M, Hamel C, Bainard LD, Arnaud MS, Grant CA, Lupwayi NZ, Malhi SS, Lemke R (2014) Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie. Soil Biol Biochem 74:156–166.  https://doi.org/10.1016/j.soilbio.2014.03.016 CrossRefGoogle Scholar
  19. Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973.  https://doi.org/10.1126/science.aab1161 CrossRefPubMedGoogle Scholar
  20. de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811.  https://doi.org/10.1016/j.femsre.2004.11.005 CrossRefGoogle Scholar
  21. De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531.  https://doi.org/10.1111/j.1461-0248.2008.01164.x CrossRefPubMedGoogle Scholar
  22. de Graaff M-A, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064.  https://doi.org/10.1111/j.1469-8137.2010.03427.x CrossRefGoogle Scholar
  23. Denef K, Roobroeck D, Manimel Wadu MCW, Lootens P, Boeckx P (2009) Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biol Biochem 41:144–153.  https://doi.org/10.1016/j.soilbio.2008.10.008 CrossRefGoogle Scholar
  24. Escudié F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, Maman S, Hernandez-Raquet G, Combes S, Pascal G (2017) FROGS: find, rapidly, OTUs with galaxy solution. Bioinformatics 34:1287–1294.  https://doi.org/10.1093/bioinformatics/btx791 CrossRefGoogle Scholar
  25. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843.  https://doi.org/10.1016/S0038-0717(03)00123-8 CrossRefGoogle Scholar
  26. Fort F, Jouany C, Cruz P (2013) Root and leaf functional trait relations in Poaceae species: implications of differing resource-acquisition strategies. J Plant Ecol 6:211–219.  https://doi.org/10.1093/jpe/rts034 CrossRefGoogle Scholar
  27. Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–950.  https://doi.org/10.1016/j.tplants.2016.07.010 CrossRefPubMedGoogle Scholar
  28. Gross N, Suding KN, Lavorel S (2007) Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J Veg Sci 18:289–300.  https://doi.org/10.1111/j.1654-1103.2007.tb02540.x CrossRefGoogle Scholar
  29. Gross N, Kunstler G, Liancourt P, de Bello F, Suding KN, Lavorel S (2009) Linking individual response to biotic interactions with community structure: a trait-based framework. Funct Ecol 23:1167–1178.  https://doi.org/10.1111/j.1365-2435.2009.01591.x CrossRefGoogle Scholar
  30. Guyonnet JP, Vautrin F, Meiffren G, Labois C, Cantarel AAM, Michalet S, Comte G, Haichar F Z (2017) The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiol Ecol 93(4):fix022.  https://doi.org/10.1093/femsec/fix022
  31. Guyonnet JP, Cantarel A, Simon L, Haichar FZ (2018) Root exudation rate as a functional trait involved in plant nutrient-use strategy classification. Ecol Evol 1–9.  https://doi.org/10.1002/ece3.4383 CrossRefGoogle Scholar
  32. Haichar FZ, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230.  https://doi.org/10.1038/ismej.2008.80 CrossRefPubMedGoogle Scholar
  33. Haichar FZ, Fochesato S, Achouak W (2013) Host plant specific control of 2,4-diacetylphloroglucinol production in the rhizosphere. Agronomy 3:621–631.  https://doi.org/10.3390/agronomy3040621 CrossRefGoogle Scholar
  34. Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80.  https://doi.org/10.1016/j.soilbio.2014.06.017 CrossRefGoogle Scholar
  35. Haichar FZ, Heulin T, Guyonnet JP, Achouak W (2016) Stable isotope probing of carbon flow in the plant holobiont. Curr Opin Biotechnol 41:9–13.  https://doi.org/10.1016/j.copbio.2016.02.023 CrossRefPubMedGoogle Scholar
  36. Hannula SE, Boschker HTS, de Boer W, van Veen JA (2012) 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline. New Phytol 194:784–799.  https://doi.org/10.1111/j.1469-8137.2012.04089.x CrossRefPubMedGoogle Scholar
  37. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56.  https://doi.org/10.1038/nrmicro797 CrossRefPubMedGoogle Scholar
  38. Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677.  https://doi.org/10.1111/j.1574-6941.2012.01437.x CrossRefPubMedGoogle Scholar
  39. Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176.  https://doi.org/10.1007/s11104-005-4274-0 CrossRefGoogle Scholar
  40. Kebede AZ, Johnston A, Schneiderman D, Bosnich W, Harris LJ (2018) Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genomics 19:131.  https://doi.org/10.1186/s12864-018-4513-4 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kjøller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39:391–422.  https://doi.org/10.2307/3544690 CrossRefGoogle Scholar
  42. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277.  https://doi.org/10.1111/mec.12481 CrossRefPubMedGoogle Scholar
  43. Kruys Å, Huhndorf SM, Miller AN (2015) Coprophilous contributions to the phylogeny of Lasiosphaeriaceae and allied taxa within Sordariales (Ascomycota, Fungi). Fungal Divers 70:101–113.  https://doi.org/10.1007/s13225-014-0296-3 CrossRefGoogle Scholar
  44. Kwaśna H, Bateman GL, Ward E (2008) Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Appl Soil Ecol 40:44–56.  https://doi.org/10.1016/j.apsoil.2008.03.005 CrossRefGoogle Scholar
  45. Kyriazopoulos AP, Orfanoudakis M, Abraham EM et al (2014) Effects of arbuscular mycorrhiza fungi on growth characteristics of Dactylis glomerata L. under drought stress conditions. Not Bot Horti Agrobot Cluj-Napoca 42:132–137.  https://doi.org/10.15835/nbha4219411 CrossRefGoogle Scholar
  46. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103.  https://doi.org/10.1016/j.tree.2007.10.008 CrossRefPubMedGoogle Scholar
  47. Li X, Wang J, Zhang S, Wang H, Li X, Li X, Zhang H (2018) Distribution of fungal endophytes in roots of Stipa krylovii across six vegetation types in grassland of northern China. Fungal Ecol 31:47–53.  https://doi.org/10.1016/j.funeco.2017.11.001 CrossRefGoogle Scholar
  48. López-García Á, Varela-Cervero S, Vasar M, Öpik M, Barea JM, Azcón-Aguilar C (2017) Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities. Mol Ecol 26:6948–6959.  https://doi.org/10.1111/mec.14403 CrossRefPubMedGoogle Scholar
  49. Lu Y, Murase J, Watanabe A, Sugimoto A, Kimura M (2004) Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48:179–186.  https://doi.org/10.1016/j.femsec.2004.01.004 CrossRefPubMedGoogle Scholar
  50. Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179.  https://doi.org/10.1111/j.1462-2920.2009.02099.x CrossRefPubMedGoogle Scholar
  51. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963.  https://doi.org/10.1093/bioinformatics/btr507 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2:e593CrossRefGoogle Scholar
  53. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663.  https://doi.org/10.1111/1574-6976.12028 CrossRefPubMedGoogle Scholar
  54. Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2005) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266:23–39.  https://doi.org/10.1007/s11104-005-4906-4 CrossRefGoogle Scholar
  55. Moll J, Hoppe B, König S, Wubet T, Buscot F, Krüger D (2016) Spatial distribution of fungal communities in an arable soil. PLoS One 11:e0148130.  https://doi.org/10.1371/journal.pone.0148130 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mommer L, Weemstra M (2012) The role of roots in the resource economics spectrum. New Phytol 195:725–727.  https://doi.org/10.1111/j.1469-8137.2012.04247.x CrossRefPubMedGoogle Scholar
  57. Mouhamadou B, Puissant J, Personeni E, Desclos-Theveniau M, Kastl EM, Schloter M, Zinger L, Roy J, Geremia RA, Lavorel S (2013) Effects of two grass species on the composition of soil fungal communities. Biol Fertil Soils 49:1131–1139.  https://doi.org/10.1007/s00374-013-0810-x CrossRefGoogle Scholar
  58. Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110.  https://doi.org/10.1038/ismej.2007.30 CrossRefPubMedGoogle Scholar
  59. Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18:365–373.  https://doi.org/10.1016/j.tim.2010.06.002 CrossRefPubMedGoogle Scholar
  60. Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O., Kosman E., Mochli E., Sharon A. (2016) Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol 92:10.  https://doi.org/10.1093/femsec/fiw152 CrossRefGoogle Scholar
  61. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241.  https://doi.org/10.1111/j.1469-8137.2010.03334.x CrossRefPubMedGoogle Scholar
  62. Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744.  https://doi.org/10.1126/science.1231574 CrossRefPubMedGoogle Scholar
  63. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315.  https://doi.org/10.1146/annurev-phyto-080508-081831 CrossRefPubMedGoogle Scholar
  64. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361.  https://doi.org/10.1007/s11104-008-9568-6 CrossRefGoogle Scholar
  65. Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Meharg A, Prosser JI (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7:828–838.  https://doi.org/10.1111/j.1462-2920.2005.00756.x CrossRefPubMedGoogle Scholar
  66. Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120CrossRefGoogle Scholar
  67. Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301.  https://doi.org/10.1111/1365-2745.12211 CrossRefGoogle Scholar
  68. Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF (2007) Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol 17:1420–1425.  https://doi.org/10.1016/j.cub.2007.07.036 CrossRefPubMedGoogle Scholar
  69. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584.  https://doi.org/10.7717/peerj.2584 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rosa LH, de Almeida Vieira ML, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189.  https://doi.org/10.1111/j.1574-6941.2010.00872.x CrossRefPubMedGoogle Scholar
  71. Sato K, Suyama Y, Saito M, Sugawara K (2005) A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl Sci 51:179–181.  https://doi.org/10.1111/j.1744-697X.2005.00023.x CrossRefGoogle Scholar
  72. Sikes BA, Hawkes CV, Fukami T (2016) Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology 97:484–493CrossRefGoogle Scholar
  73. Simon UK, Weiss M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 25:2251–2254.  https://doi.org/10.1093/molbev/msn188 CrossRefPubMedGoogle Scholar
  74. Thonar C, Schnepf A, Frossard E et al (2010) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245CrossRefGoogle Scholar
  75. Torrecillas E, Alguacil MM, Roldán A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186.  https://doi.org/10.1128/AEM.01287-12 CrossRefPubMedPubMedCentralGoogle Scholar
  76. van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37:477–494.  https://doi.org/10.1111/1574-6976.12001 CrossRefGoogle Scholar
  77. Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JP (2002) Extensive fungal diversity in plant roots. Science 295:2051.  https://doi.org/10.1126/science.295.5562.2051 CrossRefPubMedGoogle Scholar
  78. Vasiliauskas R, Menkis A, Finlay RD, Stenlid J (2007) Wood-decay fungi in fine living roots of conifer seedlings. New Phytol 174:441–446.  https://doi.org/10.1111/j.1469-8137.2007.02014.x CrossRefPubMedGoogle Scholar
  79. Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486.  https://doi.org/10.1038/ismej.2012.116 CrossRefPubMedGoogle Scholar
  80. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang G, Xu Y, Jin J, Liu J, Zhang Q, Liu X (2009) Effect of soil type and soybean genotype on fungal community in soybean rhizosphere during reproductive growth stages. Plant Soil 317:135–144CrossRefGoogle Scholar
  82. Wang Z, Li T, Wen X, Liu Y, Han J, Liao Y, DeBruyn JM (2017) Fungal communities in rhizosphere soil under conservation tillage shift in response to plant growth. Front Microbiol 8:1301.  https://doi.org/10.3389/fmicb.2017.01301 CrossRefPubMedPubMedCentralGoogle Scholar
  83. White TJ, Burns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR - Protoc Appl - Lab ManGoogle Scholar
  84. Wu WX, Liu W, Lu HH, Chen YX, Devare M, Thies J (2009) Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol Ecol 67:93–102.  https://doi.org/10.1111/j.1574-6941.2008.00599.x CrossRefPubMedGoogle Scholar
  85. Xu L, Ravnskov S, Larsen J, Nicolaisen M (2012) Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol Ecol 82:736–745.  https://doi.org/10.1111/j.1574-6941.2012.01445.x CrossRefPubMedGoogle Scholar
  86. Xue C, Penton CR, Zhu C et al (2018) Alterations in soil fungal community composition and network assemblage structure by different long-term fertilization regimes are correlated to the soil ionome. Biol Fertil Soils 54:95–106.  https://doi.org/10.1007/s00374-017-1241-x CrossRefGoogle Scholar
  87. Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao LH, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS One 12:e0170557.  https://doi.org/10.1371/journal.pone.0170557 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087.  https://doi.org/10.1080/15572536.2006.11832635 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mylène Hugoni
    • 1
  • Patricia Luis
    • 1
  • Julien Guyonnet
    • 1
  • Feth el Zahar Haichar
    • 1
  1. 1.CNRS, UMR5557, Ecologie Microbienne, INRA, UMR1418Université Lyon 1Villeurbanne CedexFrance

Personalised recommendations