Advertisement

Mycorrhiza

, Volume 28, Issue 5–6, pp 523–534 | Cite as

Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare

  • Soon-Jae Lee
  • Mengxuan Kong
  • David Morse
  • Mohamed Hijri
Original Article

Abstract

Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.

Keywords

Arbuscular mycorrhizal fungi (AMF) Symbiosis Light sensing White Collar Circadian clock FRQ gene evolution 

Notes

Acknowledgements

This work was supported by an NSERC Discovery grant to MH which is gratefully acknowledged. We thank Miss Yerim Heo for assistance in designing and editing some figures. We also thank Dr. Dave Janos and two anonymous reviewers for their helpful comments.

Supplementary material

572_2018_843_MOESM1_ESM.docx (682 kb)
ESM 1 (DOCX 681 kb)

References

  1. Ambra R, Grimaldi B, Zamboni S, Filetici P, Macino G, Ballario P (2004) Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa. Fungal Genet Biol 41:688–697CrossRefGoogle Scholar
  2. Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124CrossRefGoogle Scholar
  3. Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC (1996) Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A 93:13096–13101CrossRefGoogle Scholar
  4. Cheng P, Yang Y, Heintzen C, Liu Y (2001) Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J 20:101–108CrossRefGoogle Scholar
  5. Ciani A, Goss KU, Schwarzenbach RP (2005) Light penetration in soil and particulate minerals. Eur J Soil Sci 56:561–574.  https://doi.org/10.1111/j.1365-2389.2005.00688.x CrossRefGoogle Scholar
  6. Corrochano LM (2011) Fungal photobiology: a synopsis. IMA Fungus 2:25–28CrossRefGoogle Scholar
  7. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165CrossRefGoogle Scholar
  8. Dunlap JC, Loros JJ (2017) Making time: conservation of biological clocks from fungi to animals Microbiol Spectr 5(3): FUNK–0039–2016Google Scholar
  9. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113CrossRefGoogle Scholar
  10. Estrada AF, Avalos J (2008) The White Collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol 45:705–718CrossRefGoogle Scholar
  11. Ferguson JJ, Menge JA (1982) Factors that affect production of endomycorrhizal inoculum. Proc Fla State Hort Soc 95:37–39Google Scholar
  12. Franken P, Lapopin L, Meyer-Gauen G, Gianinazzi-Pearson V (1997) RNA accumulation and genes expressed in spores of the arbuscular mycorrhizal fungus, Gigaspora rosea. Mycologia 89:293–297.  https://doi.org/10.2307/3761085 CrossRefGoogle Scholar
  13. Gallego M, Virshup DM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139–148CrossRefGoogle Scholar
  14. Greene AV, Keller N, Haas H, Bell-Pedersen D (2003) A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell 2:231–237CrossRefGoogle Scholar
  15. Grimaldi B, Coiro P, Filetici P, Berge E, Dobosy JR, Freitag M, Selker EU, Ballario P (2006) The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17:4576–4583CrossRefGoogle Scholar
  16. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  17. Hernandez RR, Allen MF (2013) Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with the Soil Ecosystem Observatory. New Phytol 200:547–557CrossRefGoogle Scholar
  18. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miądlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547CrossRefGoogle Scholar
  19. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293CrossRefGoogle Scholar
  20. Hurley JM, Dasgupta A, Emerson JM, Zhou X, Ringelberg CS, Knabe N, Lipzen AM, Lindquist EA, Daum CG, Barry KW, Grigoriev IV, Smith KM, Galagan JE, Bell-Pedersen D, Freitag M, Cheng C, Loros JJ, Dunlap JC (2014) Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential. Proc Natl Acad Sci U S A 111:16995–17002CrossRefGoogle Scholar
  21. Hurley JM, Loros JJ, Dunlap JC (2016a) Circadian oscillators: around the transcription-translation feedback loop and on to output. Trends Biochem Sci 41:834–846CrossRefGoogle Scholar
  22. Hurley JM, Loros JJ, Dunlap JC (2016b) The circadian system as an organizer of metabolism. Fungal Genet Biol 90:39–43CrossRefGoogle Scholar
  23. Idnurm A, Heitman J (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95CrossRefGoogle Scholar
  24. Idnurm A, Rodriguez-Romero J, Corrochano LM, Sanz C, Iturriaga EA, Eslava AP, Heitman J (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci U S A 103:4546–4551CrossRefGoogle Scholar
  25. Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892CrossRefGoogle Scholar
  26. James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG (2008) The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 322:1832–1835CrossRefGoogle Scholar
  27. Jansa J, Bukovska P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts—or just soil free-riders? Front Plant Sci 4:134CrossRefGoogle Scholar
  28. Lee S-J, Kong M, Harrison P, Hijri M (2018) Conserved proteins of the RNA interference system in the arbuscular mycorrhizal fungus Rhizoglomus irregulare provide new insight into the evolutionary history of Glomeromycota. Genome Biol Evol 10:328–343.  https://doi.org/10.1093/gbe/evy002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260CrossRefGoogle Scholar
  30. Liu Y, Bell-Pedersen D (2006) Circadian rhythms in Neurospora crassa and other filamentous fungi. Eukaryot Cell 5:1184–1193CrossRefGoogle Scholar
  31. Lombardi LM, Brody S (2005) Circadian rhythms in Neurospora crassa: clock gene homologues in fungi. Fungal Genet Biol 42:887–892CrossRefGoogle Scholar
  32. Loros JJ, Dunlap JC (2001) Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol 63:757–794CrossRefGoogle Scholar
  33. Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under control of the circadian clock in Neurospora. Science 243:385–388CrossRefGoogle Scholar
  34. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164CrossRefGoogle Scholar
  35. Maeght J-L, Rewald B, Pierret A (2013) How to study deep roots-and why it matters. Front Plant Sci 4:299CrossRefGoogle Scholar
  36. McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803CrossRefGoogle Scholar
  37. McDowall J, Hunter S (2011) InterPro protein classification. Methods Mol Biol 694:37–47CrossRefGoogle Scholar
  38. Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF (2012) Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol 29:2199–2210CrossRefGoogle Scholar
  39. Nagahashi G, Douds DD Jr (2003) Action spectrum for the induction of hyphal branches of an arbuscular mycorrhizal fungus: exposure sites versus branching sites. Mycol Res 107:1075–1082CrossRefGoogle Scholar
  40. Nagahashi G, Douds DD Jr (2004) Synergism between blue light and root exudate compounds and evidence for a second messenger in the hyphal branching response of Gigaspora gigantea. Mycologia 96:948–954CrossRefGoogle Scholar
  41. Olmedo M, Ruger-Herreros C, Corrochano LM (2010) Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa. Genetics 184:651–658CrossRefGoogle Scholar
  42. Oosterhuis DM (1990) Growth and development of a cotton plant. Publications of the American Society of Agronomy, Madison, MP332-4M-9-92RGoogle Scholar
  43. Purschwitz J, Muller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571CrossRefGoogle Scholar
  44. Querfurth C, Diernfellner ACR, Gin E, Malzahn E, Hofer T, Brunner M (2011) Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol Cell 43:713–722CrossRefGoogle Scholar
  45. Redecker D, Schussler A, Stockinger H, Sturmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531CrossRefGoogle Scholar
  46. Rodriguez-Romero J, Hedtke M, Kastner C, Muller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610CrossRefGoogle Scholar
  47. Roenneberg T, Merrow M (1999) Circadian clocks—from genes to complex behaviour. Reprod Nutr Dev 39:277–294CrossRefGoogle Scholar
  48. Salichos L, Rokas A (2010) The diversity and evolution of circadian clock proteins in fungi. Mycologia 102:269–278CrossRefGoogle Scholar
  49. Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421.  https://doi.org/10.1017/S0953756201005196 CrossRefGoogle Scholar
  50. Serikawa M, Miwa K, Kondo T, Oyama T (2008) Functional conservation of clock-related genes in flowering plants: overexpression and RNA interference analyses of the circadian rhythm in the monocotyledon Lemna gibba. Plant Physiol 146:1952–1963CrossRefGoogle Scholar
  51. Shinohara ML, Correa A, Bell-Pedersen D, Dunlap JC, Loros JJ (2002) Neurospora clock-controlled gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development. Eukaryot Cell 1:33–43CrossRefGoogle Scholar
  52. Shukla A, Vyas D, Anuradha, J (2013) Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. Journal of Soil Science and Plant Nutrition 13:23–33.Google Scholar
  53. Simon NML, Dodd AN (2017) A new link between plant metabolism and circadian rhythms? Plant Cell Environ 40:995–996CrossRefGoogle Scholar
  54. Smith A (1932) Seasonal subsoil temperature variations. J Agric Res 44:421–428Google Scholar
  55. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046CrossRefGoogle Scholar
  56. Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. For Ecol Manag 46:59–102.  https://doi.org/10.1016/0378-1127(91)90245-Q CrossRefGoogle Scholar
  57. Takemiya A, Inoue S-I, Doi M, Kinoshita T, Shimazaki K-I (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127CrossRefGoogle Scholar
  58. Tester M, Morris C (1987) The penetration of light through soil. Plant Cell Environ 10:281–286.  https://doi.org/10.1111/j.1365-3040.1987.tb01607.x CrossRefGoogle Scholar
  59. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JPW, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769CrossRefGoogle Scholar
  60. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JPW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122CrossRefGoogle Scholar
  61. Uebelmesser E (1954) The endogenous daily rhythm of conidiospore formation of Pilobolus. Arch Mikrobiol 20:1–33CrossRefGoogle Scholar
  62. White MJ, Hirsch JP, Henry SA (1991) The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem 266:863–872PubMedGoogle Scholar
  63. Yang T, Xiong W, Dong C (2014) Cloning and analysis of the Oswc-1 gene encoding a putative blue light photoreceptor from Ophiocordyceps sinensis. Mycoscience 55:241–245.  https://doi.org/10.1016/j.myc.2013.09.003 CrossRefGoogle Scholar
  64. Yazdanbakhsh N, Sulpice R, Graf A, Stitt M, Fisahn J (2011) Circadian control of root elongation and C partitioning in Arabidopsis thaliana. Plant Cell Environ 34:877–894CrossRefGoogle Scholar
  65. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Recherche en Biologie VégétaleUniversité de MontréalMontréalCanada

Personalised recommendations