, Volume 28, Issue 2, pp 117–127 | Cite as

Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands

  • Haiyan Ren
  • Weiyang Gui
  • Yongfei Bai
  • Claudia Stein
  • Jorge L. M. Rodrigues
  • Gail W. T. Wilson
  • Adam B. Cobb
  • Yingjun Zhang
  • Gaowen Yang
Original Article


Grazing and topography have drastic effects on plant communities and soil properties. These effects are thought to influence arbuscular mycorrhizal (AM) fungi. However, the simultaneous impacts of grazing pressure (sheep ha−1) and topography on plant and soil factors and their relationship to the production of extra-radical AM hyphae are not well understood. Our 10-year study assessed relationships between grazing, plant species richness, aboveground plant productivity, soil nutrients, edaphic properties, and AM hyphal length density (HLD) in different topographic areas (flat or sloped). We found HLD linearly declined with increasing grazing pressure (1.5–9.0 sheep ha−1) in sloped areas, but HLD was greatest at moderate grazing pressure (4.5 sheep ha−1) in flat areas. Structural equation modeling indicates grazing reduces HLD by altering soil nutrient dynamics in sloped areas, but non-linearly influences HLD through plant community and edaphic changes in flat areas. Our findings highlight how topography influences key plant and soil factors, thus regulating the effects of grazing pressure on extra-radical hyphal production of AM fungi in grasslands. Understanding how grazing and topography influence AM fungi in semi-arid grasslands is vital, as globally, severe human population pressure and increasing demand for food aggravate the grazing intensity in grasslands.


Grazing pressure Hyphal length density Sheep Edaphic properties Structural equation modeling 



We are grateful to all the people who helped collect and process data over the years.

Funding information

This project was supported by National Natural Science Foundation of China (31501996) and (31700389), Basic research program of Jiangsu province (Natural Science Foundation)-Youth Foundation (BK20160738) and (BK20150665). We acknowledge the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) of the Chinese Academy of Sciences for providing field facilities and a long-term meteorological dataset.

Supplementary material

572_2017_812_MOESM1_ESM.docx (467 kb)
ESM 1 (DOCX 466 kb)


  1. Antoninka AJ, Ritchie ME, Johnson NC (2015) The hidden Serengeti-Mycorrhizal fungi respond to environmental gradients. Pedobiologia 58(5-6):165–176. CrossRefGoogle Scholar
  2. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29(1):261–299. CrossRefGoogle Scholar
  3. Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431(7005):181–184. CrossRefPubMedGoogle Scholar
  4. Balser TC, Treseder KK, Ekenler M (2005) Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol Biochem 37(3):601–604. CrossRefGoogle Scholar
  5. Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30(14):1867–1878. CrossRefGoogle Scholar
  6. Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98(4):745–753. CrossRefGoogle Scholar
  7. Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1-2):37–77. CrossRefGoogle Scholar
  8. Carter MR, Gregorich EG (2008) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  9. Chen DM, Zheng SX, Shan YM, Taube F, Bai YF (2013) Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Funct Ecol 27(1):273–281. CrossRefGoogle Scholar
  10. Chen T, Christensen M, Nan Z, Hou F (2017) The effects of different intensities of long-term grazing on the direction and strength of plant–soil feedback in a semiarid grassland of Northwest China. Plant Soil 413(1-2):303–317. CrossRefGoogle Scholar
  11. Cingolani AM, Noy-Meir I, Diaz S (2005) Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol Appl 15(2):757–773. CrossRefGoogle Scholar
  12. Collins SL, Calabrese LB (2012) Effects of fire, grazing and topographic variation on vegetation structure in tallgrass prairie. J Veg Sci 23(3):563–575. CrossRefGoogle Scholar
  13. Collins SL, Glenn SM, Gibson DJ (1995) Experimental-analysis of intermediate disturbance and initial floristic composition—decoupling cause and effect. Ecology 76(2):486–492. CrossRefGoogle Scholar
  14. Conant RT, Cerri CEP, Osborne BB, Paustian K (2017) Grassland management impacts on soil carbon stocks: a new synthesis. Ecol Appl 27(2):662–668. CrossRefPubMedGoogle Scholar
  15. Eisenhauer N, Bowker MA, Grace JB, Powell JR (2015) From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58(2–3):65–72. CrossRefGoogle Scholar
  16. Eom AH, Wilson GWT, Hartnett DC (2001) Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 93(2):233–242. CrossRefGoogle Scholar
  17. Gehring CA, Whitham TG (2003) Mycorrhizae-herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 295–320. Google Scholar
  18. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  19. Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93(4):711–718. CrossRefPubMedGoogle Scholar
  20. Hart MM, Reader RJ (2002) Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF? Mycorrhiza 12(6):297–301. CrossRefPubMedGoogle Scholar
  21. Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244(1/2):319–331. CrossRefGoogle Scholar
  22. Hoffmann C, Funk R, Li Y, Sommer M (2008) Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena 75(2):182–190. CrossRefGoogle Scholar
  23. Hoffmann C, Giese M, Dickhoefer U, Wan HW, Bai YF, Steffens M, Liu CY, Butterbach-Bahl K, Han XG (2016) Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: synthesis of a 6-year grazing experiment. J Arid Environ 135:50–63. CrossRefGoogle Scholar
  24. Horton TR (2015) Mycorrhizal networks. Springer, Dordrecht, Netherlands. CrossRefGoogle Scholar
  25. Hu YJ, Rillig MC, Xiang D, Hao ZP, Chen BD (2013) Changes of AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. PLoS One 8(2):e57593. CrossRefPubMedPubMedCentralGoogle Scholar
  26. IUSS Working Group WRB (2006) World reference base for soil resources. World soil resources reports. FAO, RomeGoogle Scholar
  27. Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium Subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120(3):371–380. CrossRefGoogle Scholar
  28. Jiang YN, Wang WX, Xie Q, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, Wang ET (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356(6343):1172–1175. CrossRefPubMedGoogle Scholar
  29. Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205(4):1473–1484. CrossRefPubMedGoogle Scholar
  30. Kölbl A, Steffens M, Wiesmeier M, Hoffmann C, Funk R, Krümmelbein J, Reszkowska A, Zhao Y, Peth S, Horn R, Giese M, Kögel-Knabner I (2011) Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, P.R. China. Plant Soil 340(1-2):35–58. CrossRefGoogle Scholar
  31. Kohler J, Roldán A, Campoy M, Caravaca F (2017) Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant Soil 410(1-2):273–281. CrossRefGoogle Scholar
  32. Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82(8):1016–1045. CrossRefGoogle Scholar
  33. Li W, Xu F, Zheng S, Taube F, Bai Y (2017) Patterns and thresholds of grazing-induced changes in community structure and ecosystem functioning: species-level responses and the critical role of species traits. J Appl Ecol 54(3):963–975.
  34. Li WH, Zhan SX, Lan ZC, Wu XB, Bai YF (2015) Scale-dependent patterns and mechanisms of grazing-induced biodiversity loss: evidence from a field manipulation experiment in semiarid steppe. Landsc Ecol 30(9):1751–1765. CrossRefGoogle Scholar
  35. Lin G, McCormack ML, Ma C, Guo D (2017) Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol 213(3):1440–1451. CrossRefPubMedGoogle Scholar
  36. Liu N, Kan H, Yang G, Zhang Y (2015) Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecol Monogr 85(2):269–286. CrossRefGoogle Scholar
  37. Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Collins JN, Feng H (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194(2):523–535. CrossRefPubMedGoogle Scholar
  38. Liu M, Zheng R, Bai SL, Bai YE, Wang JG (2017) Slope aspect influences arbuscular mycorrhizal fungus communities in arid ecosystems of the Daqingshan Mountains, Inner Mongolia, North China. Mycorrhiza 27(3):189–200. CrossRefPubMedGoogle Scholar
  39. Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356(6343):1175–1178. CrossRefPubMedGoogle Scholar
  40. Mikola J, Setala H, Virkajarvi P, Saarijarvi K, Ilmarinen K, Voigt W, Vestberg M (2009) Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol Monogr 79(2):221–244. CrossRefGoogle Scholar
  41. Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63(4):327–366. CrossRefGoogle Scholar
  42. Milchunas DG, Sala OE, Lauenroth WK (1988) A generalized-model of the effects of grazing by large herbivores on grassland community structure. Am Nat 132(1):87–106. CrossRefGoogle Scholar
  43. Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103(1):17–23. CrossRefPubMedGoogle Scholar
  44. Murray TR, Frank DA, Gehring CA (2010) Ungulate and topographic control of arbuscular mycorrhizal fungal spore community composition in a temperate grassland. Ecology 91(3):815–827. CrossRefPubMedGoogle Scholar
  45. Nishida T, Izumi T, Katayama N, Ohgushi T (2009) Short-term response of arbuscular mycorrhizal association to spider mite herbivory. Popul Ecol 51(2):329–334. CrossRefGoogle Scholar
  46. Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29(4):303–310. CrossRefGoogle Scholar
  47. Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol Biochem 42(7):1189–1191. CrossRefGoogle Scholar
  48. Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 33–74. CrossRefGoogle Scholar
  49. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Elsevier, New YorkGoogle Scholar
  50. Sochorova L, Jansa J, Verbruggen E, Hejcman M, Schellberg J, Kiers ET, Johnson NC (2016) Long-term agricultural management maximizing hay production can significantly reduce belowground C storage. Agric Ecosyst Environ 220:104–114. CrossRefGoogle Scholar
  51. Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, Hölzel N, Jung K, Klaus VH, Kleinebecker T, Klemmer S, Krauss J, Lange M, Morris EK, Müller J, Oelmann Y, Overmann J, Pašalić E, Rillig MC, Schaefer HM, Schloter M, Schmitt B, Schöning I, Schrumpf M, Sikorski J, Socher SA, Solly EF, Sonnemann I, Sorkau E, Steckel J, Steffan-Dewenter I, Stempfhuber B, Tschapka M, Türke M, Venter PC, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Wolters V, Wubet T, Wurst S, Fischer M, Allan E (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536(7617):456–459. CrossRefPubMedGoogle Scholar
  52. Sorensen LI, Mikola J, Kytoviita MM, Olofsson J (2009) Trampling and spatial heterogeneity explain decomposer abundances in a sub-Arctic grassland subjected to simulated reindeer grazing. Ecosystems 12(5):830–842. CrossRefGoogle Scholar
  53. Su YY, Guo LD (2007) Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza 17(8):689–693. CrossRefPubMedGoogle Scholar
  54. Tawaraya K, Shiozawa S, Ueda K, Murayama H, Nishizawa T, Toyomasu T, Murayama T, Sato S, Wagatsuma T, Yasuda H (2012) Leaf herbivory by Spodoptera litura increases arbuscular mycorrhizal colonization in roots of soybean. Soil Sci Plant Nutr 58(4):445–449. CrossRefGoogle Scholar
  55. Van der Heyde M, Bennett JA, Pither J, Hart M (2017) Longterm effects of grazing on arbuscular mycorrhizal fungi. Agric Ecosyst Environ 243:27–33. CrossRefGoogle Scholar
  56. Veen GF, Olff H, Duyts H, van der Putten WH (2010) Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology 91(3):828–835. CrossRefPubMedGoogle Scholar
  57. Wang WX, Shi JC, Xie QJ, Jiang YN, Yu N, Wang ET (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10(9):1147–1158. CrossRefPubMedGoogle Scholar
  58. Wearn JA, Gange AC (2007) Above-ground herbivory causes rapid and sustained changes in mycorrhizal colonization of grasses. Oecologia 153(4):959–971. CrossRefPubMedGoogle Scholar
  59. Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12(5):452–461. CrossRefPubMedGoogle Scholar
  60. Zhou G, Zhou X, He Y, Shao J, Hu Z, Liu R, Zhou H, Hosseinibai S (2017) Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob Chang Biol 23(3):1167–1179. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Haiyan Ren
    • 1
  • Weiyang Gui
    • 1
  • Yongfei Bai
    • 2
  • Claudia Stein
    • 3
  • Jorge L. M. Rodrigues
    • 4
  • Gail W. T. Wilson
    • 5
  • Adam B. Cobb
    • 5
  • Yingjun Zhang
    • 1
    • 6
  • Gaowen Yang
    • 1
  1. 1.College of Agro-grassland ScienceNanjing Agricultural UniversityNanjingChina
  2. 2.State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
  3. 3.Tyson Research Center and Department of BiologyWashington University St. LouisSt. LouisUSA
  4. 4.Department of Land, Air and Water ResourcesUniversity of California-DavisDavisUSA
  5. 5.Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterUSA
  6. 6.Department of Grassland ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations