Advertisement

Mycorrhiza

, Volume 28, Issue 1, pp 93–100 | Cite as

Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice

  • Navina Drechsler
  • Pierre-Emmanuel Courty
  • Daphnée Brulé
  • Reinhard KunzeEmail author
Short Note

Abstract

Arbuscular mycorrhizal fungi (AMF) colonize up to 90% of all land plants and facilitate the acquisition of mineral nutrients by their hosts. Inorganic orthophosphate (Pi) and nitrogen (N) are the major nutrients transferred from the fungi to plants. While plant Pi transporters involved in nutrient transfer at the plant-fungal interface have been well studied, the plant N transporters participating in this process are largely unknown except for some ammonium transporters (AMT) specifically assigned to arbuscule-colonized cortical cells. In plants, many nitrate transporter 1/peptide transporter family (NPF) members are involved in the translocation of nitrogenous compounds including nitrate, amino acids, peptides and plant hormones. Whether NPF members respond to AMF colonization, however, is not yet known. Here, we investigated the transcriptional regulation of 82 rice (Oryza sativa) NPF genes in response to colonization by the AMF Rhizophagus irregularis in roots of plants grown under five different nutrition regimes. Expression of the four OsNPF genes NPF2.2/PTR2, NPF1.3, NPF6.4 and NPF4.12 was strongly induced in mycorrhizal roots and depended on the composition of the fertilizer solution, nominating them as interesting candidates for nutrient signaling and exchange processes at the plant-fungal interface.

Keywords

Oryza sativa Rhizophagus irregularis Nitrogen Fertilization Nitrate transporter 1/peptide transporter family NPF gene expression 

Notes

Acknowledgements

We thank Christine Rausch for conceptually and experimentally contributing to this study.

Funding information

This work was supported by a fellowship of the Studienstiftung des Deutschen Volkes to ND and by funds of the Dahlem Centre of Plant Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

572_2017_802_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2077 kb)

References

  1. Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9:465.  https://doi.org/10.1186/1471-2105-9-465 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aulakh MS, BijaySingh (1997) Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutr Cycl Agroecosyst 47:197–212CrossRefGoogle Scholar
  3. Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular Mycorrhizae. Can J Bot Rev Canadienne De Botanique 62:2128–2134Google Scholar
  4. Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy-Basel 5:587–612.  https://doi.org/10.3390/agronomy5040587 CrossRefGoogle Scholar
  5. Calabrese S, Perez-Tienda J, Ellerbeck M et al (2016) GintAMT3—a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis. Front Plant Sci 7:679.  https://doi.org/10.3389/fpls.2016.00679 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caldana C, Scheible WR, Mueller-Roeber B, Ruzicic S (2007) A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods 3:7.  https://doi.org/10.1186/1746-4811-3-7 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen MM, Yin HB, O'Connor P, Wang YS, Zhu YG (2010) C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326:21–29.  https://doi.org/10.1007/s11104-009-9982-4 CrossRefGoogle Scholar
  8. Corratge-Faillié C, Lacombe B (2017) Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J Exp Bot 68:3107–3113.  https://doi.org/10.1093/jxb/erw499 CrossRefPubMedGoogle Scholar
  9. Corrêa A, Cruz C, Ferrol N (2015) Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25:499–515.  https://doi.org/10.1007/s00572-015-0627-6 CrossRefPubMedGoogle Scholar
  10. Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buee M, Garbaye J, Martin F, Kues U (2009) Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 182:736–750.  https://doi.org/10.1111/j.1469-8137.2009.02774.x CrossRefPubMedGoogle Scholar
  11. Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Crit Rev Plant Sci 34:4–16.  https://doi.org/10.1080/07352689.2014.897897 CrossRefGoogle Scholar
  12. Drechsler N, Zheng Y, Bohner A, Nobmann B, von Wirén N, Kunze R, Rausch C (2015) Nitrate-dependent control of shoot K homeostasis by the nitrate transporter1/peptide transporter family member NPF7.3/NRT1.5 and the stelar K+ outward rectifier SKOR in Arabidopsis. Plant Physiol 169:2832–2847.  https://doi.org/10.1104/pp.15.01152 PubMedPubMedCentralGoogle Scholar
  13. Duan YH, Zhang YL, Ye LT, Fan XR, GH X, Shen QR (2007) Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Ann Bot 99:1153–1160.  https://doi.org/10.1093/aob/mcm051 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G (2017) Plant nitrate transporters: from gene function to application. J Exp Bot.  https://doi.org/10.1093/jxb/erx011
  15. Fried M, Zsoldos F, Vose PB, Shatokhi IL (1965) Characterizing NO3 and NH4 uptake process of rice roots by use of 15N labelled NH4NO3. Physiol Plant 18:313–320.  https://doi.org/10.1111/j.1399-3054.1965.tb06894.x CrossRefGoogle Scholar
  16. Gamborg OL, Wetter LR (1975) Plant tissue culture methods. National Research Council of Canada. Prairie Regional Laboratory, Saskatoon, SaskatchewanGoogle Scholar
  17. Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in rice roots colonised with arbuscular mycorrhizal fungi. Can J Bot Rev Canadienne De Botanique 85:644–651.  https://doi.org/10.1139/B07-070 Google Scholar
  18. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10.  https://doi.org/10.1186/1471-2229-9-10 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823.  https://doi.org/10.1038/nature03610 CrossRefPubMedGoogle Scholar
  20. Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009a) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212.  https://doi.org/10.1111/j.1469-8137.2008.02725.x CrossRefPubMedGoogle Scholar
  21. Guether M, Neuhaeuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009b) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by rbuscular mycorrhizal fungi. Plant Physiol 150:73–83.  https://doi.org/10.1104/pp.109.136390 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Güimil S, Chang HS, Zhu T et al (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A 102:8066–8070.  https://doi.org/10.1073/pnas.0502999102 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular Mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005.  https://doi.org/10.1105/tpc.108.062414 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hildebrandt U, Schmelzer E, Bothe H (2002) Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol Plant 115:125–136.  https://doi.org/10.1034/j.1399-3054.2002.1150115.x CrossRefPubMedGoogle Scholar
  25. Jeong JY, Suh S, Guan CH et al (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978.  https://doi.org/10.1104/pp.103.032102 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of N-15-labeled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil-N. New Phytol 122:281–288.  https://doi.org/10.1111/j.1469-8137.1992.tb04232.x CrossRefGoogle Scholar
  27. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647.  https://doi.org/10.1111/j.1469-8137.2009.03110.x CrossRefPubMedGoogle Scholar
  28. Jørgensen ME, Xu D, Crocoll C, Ramírez D, Motawia MS, Olsen CE, Nour-Eldin HH, Halkier BA (2017) Origin and evolution of transporter substrate specificity within the NPF family. eLIFE 6.  https://doi.org/10.7554/eLife.19466
  29. Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646.  https://doi.org/10.1093/aob/mci216 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Koegel S, Ait Lahmidi N, Arnould C et al (2013a) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol 198:853–865.  https://doi.org/10.1111/nph.12199 CrossRefPubMedGoogle Scholar
  31. Koegel S, Boller T, Lehmann MF, Wiemken A, Courty PE (2013b) Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis. Plant Signal Behav 8:e25229.  https://doi.org/10.4161/psb.25229 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Koegel S, Mieulet D, Baday S et al (2017) Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza 27:695–708.  https://doi.org/10.1007/s00572-017-0786-8 CrossRefGoogle Scholar
  33. Kronzucker HJ, Glass ADM, Siddiqi MY, Kirk GJD (2000) Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol 145:471–476.  https://doi.org/10.1046/j.1469-8137.2000.00606.x CrossRefGoogle Scholar
  34. Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119:1041–1045.  https://doi.org/10.1104/pp.119.3.1041 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273.  https://doi.org/10.1016/j.pbi.2009.12.003 CrossRefPubMedGoogle Scholar
  36. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  37. Leran S, Varala K, Boyer JC et al (2014) A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9.  https://doi.org/10.1016/j.tplants.2013.08.008 CrossRefPubMedGoogle Scholar
  38. Li H, Yu M, XQ D, Wang ZF, WH W, Quintero FJ, Jin XH, Li HD, Wang Y (2017) NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis. Plant Cell 29:2016–2026.  https://doi.org/10.1105/tpc.16.00972 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li Y, Ouyang J, Wang YY, Hu R, Xia K, Duan J, Wang Y, Tsay YF, Zhang M (2015) Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep 5:9635.  https://doi.org/10.1038/srep09635 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110.  https://doi.org/10.1016/j.fgb.2005.10.005 CrossRefPubMedGoogle Scholar
  41. Miller SP (2000) Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155.  https://doi.org/10.1046/j.1469-8137.2000.00566.x CrossRefGoogle Scholar
  42. Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges—an overview. Mycorrhiza 14:65–77.  https://doi.org/10.1007/s00572-004-0296-3 CrossRefPubMedGoogle Scholar
  43. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329.  https://doi.org/10.1073/pnas.202474599 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Perez-Tienda J, Correa A, Azcon-Aguilar C, Ferrol N (2014) Transcriptional regulation of host NH(4)(+) transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiol Biochem 75:1–8.  https://doi.org/10.1016/j.plaphy.2013.11.029 CrossRefPubMedGoogle Scholar
  45. Perez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcon-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055.  https://doi.org/10.1016/j.fgb.2011.08.003 CrossRefPubMedGoogle Scholar
  46. Sasakawa H, Yamamoto Y (1978) Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors. Plant Physiol 62:665–669.  https://doi.org/10.1104/pp.62.4.665 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007) Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777.  https://doi.org/10.1105/tpc.106.048173 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. 3rd edition. Academic Press, San DiegoGoogle Scholar
  49. Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254.  https://doi.org/10.1111/j.1365-3040.2005.01360.x CrossRefGoogle Scholar
  50. Vallino M, Fiorilli V, Bonfante P (2014) Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell Environ 37:557–572.  https://doi.org/10.1111/pce.12177 CrossRefPubMedGoogle Scholar
  51. Vallino M, Greppi D, Novero M, Bonfante P, Lupotto E (2009) Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Ann Appl Biol 154:195–204.  https://doi.org/10.1111/j.1744-7348.2008.00286.x CrossRefGoogle Scholar
  52. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034 0031.  https://doi.org/10.1186/gb-2002-3-7-research0034 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467.  https://doi.org/10.1016/j.tplants.2012.04.006 CrossRefPubMedGoogle Scholar
  54. Yendrek CR, Lee YC, Morris V et al (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62:100–112.  https://doi.org/10.1111/j.1365-313X.2010.04134.x CrossRefPubMedGoogle Scholar
  55. Zhao XB, Huang JY, HH Y, Wang L, Xie WB (2010) Genomic survey, characterization and expression profile analysis of the peptide transporter family in rice (Oryza sativa L.) BMC Plant Biol 10:92.  https://doi.org/10.1186/1471-2229-10-92 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Biology/Applied Genetics, Dahlem Centre of Plant SciencesFreie Universität BerlinBerlinGermany
  2. 2.Agroécologie, AgroSupDijon, CNRS, INRAUniversité de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations