Advertisement

Mycorrhiza

, Volume 27, Issue 6, pp 587–594 | Cite as

First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root-associated fungi

  • David J. MidgleyEmail author
  • Paul Greenfield
  • Andrew Bissett
  • Nai Tran-Dinh
Short Note

Abstract

The prominent ericoid mycorrhizal fungus, Pezoloma ericae, has not been found in Australia to date. In the present study, internal transcribed spacer (ITS) data from the Biomes of Australia Soil Environments (BASE) was searched for evidence of P. ericae and other known ericoid mycorrhizal and root-associated taxa. ITS sequences with high identity to P. ericae, Meliniomyces bicolor, Meliniomyces variabilis, Cairneyella sp. 2, Cadophora finlandica and Woollsia mycorrhizal fungus VI were identified and their distribution in Australia visualised. This is the first evidence that P. ericae, M. bicolor and M. variabilis very likely occur on the Australian continent and provides a set of locations from which to seek isolates for further characterisation. The presence of P. ericae in South America, South Africa, and now Australia suggests a broad and ancient Gondwanan distribution for this well-studied species.

Keywords

Meliniomyces Rhizoscyphus ericae Hymenoscyphus ericae Oidiodendron Ericaceae 

Notes

Acknowledgements

This study is made possible by the work of Bio Platforms Australia and the BASE project. We gratefully acknowledge their contribution to this study and to the biogeographic understanding of Australian soils more broadly. We thank Drs. Kim Fung and Thea King for constructive comments on the manuscript.

Supplementary material

572_2017_769_MOESM1_ESM.csv (49 kb)
ESM 1 (CSV 48 kb)

References

  1. Allen WK, Allaway WG, Cox GC, Valder PG (1989) Ultrastructure of mycorrhizas of Dracophyllum secundrum R. Br. (Ericales: Epacridaceae). Aust J Plant Physiol 16:147–153CrossRefGoogle Scholar
  2. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552Google Scholar
  3. Atlas of Living Australia (2013) In: http://bie.ala.org.au/species/urn:lsid:biodiversity.org.au:apni.taxon:399674. Accessed 4 Dec 2013
  4. Baral H-O, Krieglsteiner L (2006) Hymenoscyphus subcarneus, a little known bryicolous discomycete found in the Białowieża National Park. Acta Mycol 41:11–20CrossRefGoogle Scholar
  5. Bissett A, Fitzgerald A, Meintjes T et al (2016) Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. Gigascience 5:21. doi: 10.1186/s13742-016-0126-5 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bougoure DS, Cairney JWG (2005a) Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods. Environ Microbiol 7:1743–1754. doi: 10.1111/j.1462-2920.2005.00919.x CrossRefPubMedGoogle Scholar
  7. Bougoure DS, Cairney JWG (2005b) Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environ Microbiol 7:819–827. doi: 10.1111/j.1462-2920.2005.00755.x CrossRefPubMedGoogle Scholar
  8. Bougoure DS, Parkin PI, Cairney JWG et al (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4624–4636. doi: 10.1111/j.1365-294X.2007.03540.x CrossRefPubMedGoogle Scholar
  9. Bruzone MC, Fontenla SB, Vohník M (2015) Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza:25–40. doi: 10.1007/s00572-014-0586-3
  10. Bruzone MC, Fehrer J, Fontenla SB, Vohník M (2016) First record of Rhizoscyphus ericae in Southern Hemisphere’s Ericaceae. Mycorrhiza. doi: 10.1007/s00572-016-0738-8 PubMedGoogle Scholar
  11. Cairney JWG, Ashford AE (2002) Biology of mycorrhizal associations of epacrids (Ericaceae). New Phytol 154:305–326CrossRefGoogle Scholar
  12. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334 CrossRefPubMedGoogle Scholar
  13. Chambers SM, Curlevski NJA, Cairney JWG (2008) Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest. FEMS Microbiol Ecol 65:263–270. doi: 10.1111/j.1574-6941.2008.00481.x CrossRefPubMedGoogle Scholar
  14. Chevenet F, Brun C, Bañuls A-L et al (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439. doi: 10.1186/1471-2105-7-439 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Curlevski NJA, Chambers SM, Anderson IC, Cairney JWG (2009a) Identical genotypes of an ericoid mycorrhiza-forming fungus occur in roots of Epacris pulchella (Ericaceae) and Leptospermum polygalifolium (Myrtaceae) in an Australian sclerophyll forest. FEMS Microbiol Ecol 67:411–420. doi: 10.1111/j.1574-6941.2008.00637.x CrossRefPubMedGoogle Scholar
  16. Davies P, McLean C, Bell T (2003) Root survey and isolation of fungi from alpine epacrids (Ericaceae). Australas Mycol 22:4–10Google Scholar
  17. Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi: 10.1093/nar/gkn180 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deshpande V, Wang Q, Greenfield P et al (2015) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5. doi: 10.3852/14-293 CrossRefPubMedGoogle Scholar
  19. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edgar RC (2010) Search and clustering hundreds of times faster than BLAST. Bioinformatics:1–3. doi: 10.1093/bioinformatics/btq461
  21. Guindon SE, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi: 10.1080/10635150390235520 CrossRefPubMedGoogle Scholar
  22. Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581. doi: 10.1139/b97-869 CrossRefGoogle Scholar
  23. Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (= Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27. doi: 10.3114/sim.53.1.1 CrossRefGoogle Scholar
  24. Hazard C, Gosling P, Mitchell DT et al (2014) Diversity of fungi associated with hair roots of ericaceous plants is affected by land use. FEMS Microbiol Ecol 87:586–600. doi: 10.1111/1574-6941.12247 CrossRefPubMedGoogle Scholar
  25. Kjøller R, Olsrud M, Michelsen A (2010) Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol 3:205–214. doi: 10.1016/j.funeco.2009.10.005 CrossRefGoogle Scholar
  26. Kohout P, Tedersoo L (2017) Effect of soil moisture on root-associated fungal communities of Erica dominans in Drakensberg mountains in South Africa. Mycorrhiza. doi: 10.1007/s00572-017-0760-5 Google Scholar
  27. Liu G, Chambers S, Cairney J (1998) Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens. New Phytol 140:145–153CrossRefGoogle Scholar
  28. Mclean CB, Anthony J, Collins RA et al (1998) First synthesis of ericoid mycorrhizas in the Epacridaceae under axenic conditions. New Phytol 139:589–593CrossRefGoogle Scholar
  29. McLean C, Cunnington J, Lawrie A (1999) Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytol 144:351–358CrossRefGoogle Scholar
  30. Midgley DJ, Chambers SM, Cairney JWG (2002) Spatial distribution of fungal endophyte genotypes in a Woollsia pungens (Ericaceae) root system. Aust J Bot 50:559–565CrossRefGoogle Scholar
  31. Midgley DJ, Chambers SM, Cairney JWG (2004a) Distribution of ericoid mycorrhizal endophytes and root-associated fungi in neighbouring Ericaceae plants in the field. Plant Soil 259:137–151. doi: 10.1023/B:PLSO.0000020947.13655.9f CrossRefGoogle Scholar
  32. Midgley DJ, Chambers SM, Cairney JWG (2004b) Utilisation of carbon substrates by multiple genotypes of ericoid mycorrhizal fungal endophytes from eastern Australian Ericaceae. Mycorrhiza 14:245–251. doi: 10.1007/s00572-003-0262-5 CrossRefPubMedGoogle Scholar
  33. Midgley DJ, Chambers SM, Cairney JWG (2004c) Inorganic and organic substrates as sources of nitrogen and phosphorus for multiple genotypes of two ericoid mycorrhizal fungal taxa from Woollsia pungens and Leucopogon parviflorus (Ericaceae). Aust J Bot 52:63–71CrossRefGoogle Scholar
  34. Midgley DJ, Jordan LA, Saleeba JA, McGee PA (2006) Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza 16:175–182. doi: 10.1007/s00572-005-0029-2 CrossRefPubMedGoogle Scholar
  35. Midgley DJ, Rosewarne CP, Greenfield P et al (2016) Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Mycorrhiza 26:345–352. doi: 10.1007/s00572-016-0683-6 CrossRefPubMedGoogle Scholar
  36. Palmer J, Horton B, Allaway W, Ashford A (2007) Growth stimulation of Woollsia pungens by a natural ericoid mycorrhizal fungal endophyte. Australas Mycol 26:1–8Google Scholar
  37. Pearson V, Read DJ (1973a) Biology of mycorrhiza in the Ericaceae II: transport of carbon and phosphorus by endophyte and mycorrhiza. New Phytol 72:1325–1331CrossRefGoogle Scholar
  38. Pearson V, Read DJ (1973b) The biology of mycorrhiza in the Ericaceae: I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol 72:371–379CrossRefGoogle Scholar
  39. Peay KG, Kennedy PG, Davies SJ et al (2010) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542. doi: 10.1111/j.1469-8137.2009.03075.x CrossRefPubMedGoogle Scholar
  40. Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244:41–53. doi: 10.1023/A:1020289401610 CrossRefGoogle Scholar
  41. Sharples JM, Chambers SM, Meharg AA, Cairney JWG (2000) Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162. doi: 10.1046/j.1469-8137.2000.00734.x CrossRefGoogle Scholar
  42. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic PressGoogle Scholar
  43. Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata—the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563CrossRefGoogle Scholar
  44. Walker JF, Aldrich-Wolfe L, Riffel A et al (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191:515–527. doi: 10.1111/j.1469-8137.2011.03703.x CrossRefPubMedGoogle Scholar
  45. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi: 10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Whitaker J (2014) The Matplotlib Basemap toolkit user’s guide (v.1.0.8)Google Scholar
  47. Williams AF, Chambers SM, Davies PW et al (2004) Molecular investigation of sterile root-associated fungi from Epacris microphylla R. Br. (Ericaceae) and other epacrids at alpine, subalpine and coastal heathland sites. Australas Mycol 23:94–104Google Scholar
  48. Wurzburger N, Higgins BP, Hendrick RL (2012) Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub. Ecol Evol 2:65–79. doi: 10.1002/ece3.67 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • David J. Midgley
    • 1
    Email author
  • Paul Greenfield
    • 1
  • Andrew Bissett
    • 2
  • Nai Tran-Dinh
    • 1
  1. 1.CSIRONorth RydeAustralia
  2. 2.CSIROHobartAustralia

Personalised recommendations