Mycorrhiza

, Volume 27, Issue 3, pp 273–282 | Cite as

Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient

  • Cameron P. Egan
  • Ragan M. Callaway
  • Miranda M. Hart
  • Jason Pither
  • John Klironomos
Original Article

Abstract

Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

Keywords

Arbuscular mycorrhizal fungi Elevation gradients Community phylogenetics Mycorrhizal ecology 454 pyrosequencing 

Notes

Acknowledgements

We wish to thank the US National Park Service for the permission and access to the field sites. We also thank the Natural Sciences and Engineering Research Council of Canada for Discovery grants to MMH, JP and JK.

Supplementary material

572_2016_752_MOESM1_ESM.docx (491 kb)
Fig S1(DOCX 491 kb)
572_2016_752_MOESM2_ESM.docx (172 kb)
Fig S2(DOCX 171 kb)
572_2016_752_MOESM3_ESM.docx (101 kb)
Fig S3(DOCX 100 kb)
572_2016_752_MOESM4_ESM.docx (18 kb)
Table S1(DOCX 17 kb)

References

  1. Agnarsson I, Cheng RC, Kuntner M (2014) A multi-clade test supports the intermediate dispersal model of biogeography. PLoS One 9:e86780. doi:10.1371/journal.pone.0086780 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  3. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  4. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x CrossRefPubMedGoogle Scholar
  5. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x CrossRefPubMedGoogle Scholar
  6. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10. doi:10.1111/j.1462-2920.2005.00942.x CrossRefPubMedGoogle Scholar
  7. Bryant JA, Lamanna C, Morlon H et al (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105:11505–11511. doi:10.1073/pnas.0801920105 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303.QIIME CrossRefPubMedPubMedCentralGoogle Scholar
  9. Caruso T, Hempel S, Powell JR et al (2012) Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93:1115–1124. doi:10.1890/11-1030.1 CrossRefPubMedGoogle Scholar
  10. Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491. doi:10.1016/j.tplants.2013.05.001 CrossRefPubMedGoogle Scholar
  11. Chen J (2015) GUniFrac: generalized UniFrac distance package. R Packag. version 1.0Google Scholar
  12. Chilvers G, Lapeyrie F, Horan D (1987) Ectomycorrhizal vs endomycorrhizal fungi within the same root system. New Phytol 107:441–448. doi:10.1111/j.1469-8137.1987.tb00195.x CrossRefGoogle Scholar
  13. Davison J, Öpik M, Zobel M et al (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7:e141968. doi:10.1371/journal.pone.0041938 CrossRefGoogle Scholar
  14. De Beenhouwer M, Van Geel M, Ceulemans T et al (2015) Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biol Biochem 91:133–139. doi:10.1016/j.soilbio.2015.08.037 CrossRefGoogle Scholar
  15. Dumbrell AJ, Nelson M, Helgason T et al (2010) Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes? J Ecol 98:419–428. doi:10.1111/j.1365-2745.2009.01622.x CrossRefGoogle Scholar
  16. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. doi:10.1186/1471-2105-5-113 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  18. Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544CrossRefGoogle Scholar
  19. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi:10.1016/0006-3207(92)91201-3 CrossRefGoogle Scholar
  20. Fierer N, Mccain CM, Meir P et al (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804. doi:10.1890/10-1170.1 CrossRefPubMedGoogle Scholar
  21. Gai JP, Tian H, Yang FY et al (2012) Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia (Jena) 55:145–151. doi:10.1016/j.pedobi.2011.12.004 CrossRefGoogle Scholar
  22. Geml J, Pastor N, Fernandez L et al (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol Ecol 23:2452–2472. doi:10.1111/mec.12765 CrossRefPubMedGoogle Scholar
  23. Goberna M, García C, Verdú M (2014) A role for biotic filtering in driving phylogenetic clustering in soil bacterial communities. Glob Ecol Biogeogr 23:1346–1355. doi:10.1111/geb.12227 CrossRefGoogle Scholar
  24. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621CrossRefGoogle Scholar
  25. Hart MM, Reader RJ (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36:357–366. doi:10.1007/s00374-002-0539-4 CrossRefGoogle Scholar
  26. Hazard C, Gosling P, van der Gast CJ et al (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508. doi:10.1038/ismej.2012.127 CrossRefPubMedGoogle Scholar
  27. Helgason T, Daniell TJ, Husband R et al (1998) Ploughing up the wood-wide web? Nature 394:431. doi:10.1038/28764 CrossRefPubMedGoogle Scholar
  28. Hervé M (2015) RVAideMemore. R Packag. version 0.9-54Google Scholar
  29. Horn S, Caruso T, Verbruggen E et al (2014) Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. ISME J 8:2231–2242. doi:10.1038/ismej.2014.72 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Horner-Devine MC, Bohannan BJM (2006) Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87:S100–S108. doi:10.1890/0012-9658(2006)87[100:PCAOIB]2.0.CO;2 CrossRefPubMedGoogle Scholar
  31. Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN (2009) Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J Anim Ecol 78:315–327. doi:10.1111/j.1365-2656.2008.01487.x CrossRefPubMedGoogle Scholar
  32. Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960. doi:10.1111/j.1461-0248.2009.01354.x CrossRefPubMedGoogle Scholar
  33. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. doi:10.1093/bioinformatics/btq166 CrossRefPubMedGoogle Scholar
  34. Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:86–99. doi:10.1890/0012-9658(2006)87[86:TPSOAN]2.0.CO;2 CrossRefGoogle Scholar
  35. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303. doi:10.1016/j.soilbio.2011.07.012 CrossRefGoogle Scholar
  36. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301. doi:10.1890/02-0413 CrossRefGoogle Scholar
  37. Klironomos JN, Kendrick WB (1995) Relationships among microartropods, fungi, and their environment. Plant Soil 170:183–197. doi:10.1007/BF02183066 CrossRefGoogle Scholar
  38. Klironomos JN, Ursic M (1998) Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, glomus intraradices, by the collembolan, Folsomia candida. Biol Fertil Soils 26:250–253. doi:10.1007/s003740050375 CrossRefGoogle Scholar
  39. Kraft NJB, Comita LS, Chase JM et al (2011) Disentangling the drivers of beta diversity along latitudinal and elevational gradients. Science 333(80):1755–1758CrossRefPubMedGoogle Scholar
  40. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–624CrossRefGoogle Scholar
  41. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123. doi:10.1111/j.1462-2920.2009.02051.x CrossRefPubMedGoogle Scholar
  42. Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units—adopting the mycocentric viewofarbuscularmycorrhizal networks. FEMS Microbiol Ecol 74:336–345. doi:10.1111/j.1574-6941.2010.00956.x CrossRefPubMedGoogle Scholar
  43. Lekberg Y, Koide RT, Rohr JR et al (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105. doi:10.1111/j.1365-2745.2006.01193.x CrossRefGoogle Scholar
  44. Li X, Gai J, Cai X et al (2014) Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24:95–107. doi:10.1007/s00572-013-0518-7 CrossRefPubMedGoogle Scholar
  45. Liu L, Hart MM, Zhang J et al (2015a) Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. FEMS Microbiol Ecol. doi:10.1093/femsec/fiv078 Google Scholar
  46. Liu Y, Johnson NC, Mao L et al (2015b) Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility. Soil Biol Biochem 89:196–205. doi:10.1016/j.soilbio.2015.07.007 CrossRefGoogle Scholar
  47. Looby CI, Maltz MR, Treseder KK (2016) Belowground responses to elevation in a changing cloud forest. Ecol Evol 6:1996–2009. doi:10.1002/ece3.2025 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316(80):1746–1748. doi:10.1126/science.1143082 CrossRefPubMedGoogle Scholar
  49. Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695. doi:10.1371/journal.pone.0036695 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093. doi:10.1111/j.1461-0248.2010.01509.x CrossRefPubMedGoogle Scholar
  51. Moora M, Berger S, Davison J et al (2011) Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr 38:1305–1317. doi:10.1111/j.1365-2699.2011.02478.x CrossRefGoogle Scholar
  52. Mueller RC, Bohannan BJM (2015) Shifts in the phylogenetic structure of arbuscular mycorrhizal fungi in response to experimental nitrogen and carbon dioxide additions. Oecologia 179:175–185. doi:10.1007/s00442-015-3337-z CrossRefPubMedGoogle Scholar
  53. Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford university press, OxfordGoogle Scholar
  54. Narwani A, Matthews B, Fox J, Venail P (2015) Using phylogenetics in community assembly and ecosystem functioning research. Funct Ecol 29:589–591. doi:10.1111/1365-2435.12431 CrossRefGoogle Scholar
  55. Oehl F, Sýkorová Z, Redecker D et al (2006) Acaulospora Alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss alps. Mycologia 98:286–294. doi:10.3852/mycologia.98.2.286 CrossRefPubMedGoogle Scholar
  56. Oksanen AJ, Blanchet FG, Kindt R, et al. (2015) Vegan: community ecology package. R Packag. version 2.3–1Google Scholar
  57. Öpik M, Vanatoa A, Vanatoa E et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. doi:10.1111/j.1469-8137.2010.03334.x CrossRefPubMedGoogle Scholar
  58. Öpik M, Zobel M, Cantero JJ et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430. doi:10.1007/s00572-013-0482-2 CrossRefPubMedGoogle Scholar
  59. Powell JR, Parrent JL, Hart MM et al (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc B Biol Sci 276:4237–4245. doi:10.1098/rspb.2009.1015 CrossRefGoogle Scholar
  60. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12(1):38Google Scholar
  61. Rambaut A (2012) FigTree version 1.4.2. http://tree.bio.ed.ac.uk/software/figtree/
  62. Sabannavar SJ, Lakshman HC (2011) Synergistic interactions among Azotobacter, pseudomonas, and arbuscular mycorrhizal fungi on two varieties of Sesamum indicum L. Commun Soil Sci Plant Anal 42:2122–2133. doi:10.1111/j.1439-037X.2008.00338.x CrossRefGoogle Scholar
  63. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 58:291–295PubMedPubMedCentralGoogle Scholar
  64. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  65. Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463. doi:10.1093/bioinformatics/bti191 CrossRefPubMedGoogle Scholar
  66. Swenson NG (2009) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS One 4:e4390. doi:10.1371/journal.pone.0004390 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Swenson NG, Enquist BJ, Pither J et al (2006) The problem and promise of scale dependency in community phylogenetics. Ecology 87:2418–2424. doi:10.1890/0012-9658(2006)87[2418:TPAPOS]2.0.CO;2 CrossRefPubMedGoogle Scholar
  68. Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal fungi. Ecosystems 9:305–316. doi:10.1007/s10021-005-0110-x CrossRefGoogle Scholar
  69. Wang J, Soininen J, He J, Shen J (2012) Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep 4:217–226. doi:10.1111/j.1758-2229.2011.00324.x CrossRefPubMedGoogle Scholar
  70. Webb C (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. doi:10.1086/303378 CrossRefPubMedGoogle Scholar
  71. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. doi:10.1146/annurev.ecolsys.33.010802.150448 CrossRefGoogle Scholar
  72. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83. doi:10.2307/3001968 CrossRefGoogle Scholar
  73. Xiang D, Verbruggen E, Hu Y et al (2014) Land use influences arbuscular mycorrhizal fungal communities in the farming—pastoral ecotone of northern China. New Phytol 204:968–978. doi:10.1111/nph.12961 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cameron P. Egan
    • 1
  • Ragan M. Callaway
    • 2
  • Miranda M. Hart
    • 1
  • Jason Pither
    • 1
  • John Klironomos
    • 1
  1. 1.Department of BiologyUniversity of British Columbia, Okanagan campusKelownaCanada
  2. 2.Division of Biological Sciences and the Institute on EcosystemsUniversity of MontanaMissoulaUSA

Personalised recommendations