Mycorrhiza

, Volume 26, Issue 8, pp 831–846 | Cite as

Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales)

  • Martin Vohník
  • Matěj Pánek
  • Judith Fehrer
  • Marc-André Selosse
Original Article

Abstract

The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.

Keywords

Ericaceae Ericoid mycorrhiza Sebacinales Serendipitaceae Endophytes In vitro re-synthesis 

References

  1. Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Basiewicz M, Weiss M, Kogel K-H, Langen G, Zorn H, Zuccaro A (2012) Molecular and phenotypic characterization of a range of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal Biol 116:204–213CrossRefPubMedGoogle Scholar
  4. Berch SM, Allen TR, Berbee ML (2002) Molecular detection, community structure and phylogeny of ericoid mycorrhizal fungi. Plant Soil 244:55–66CrossRefGoogle Scholar
  5. Bonfante-Fasolo P (1980) Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc 75:320–325CrossRefGoogle Scholar
  6. Bougoure DS, Parkin PI, Cairney JWG, Alexander IJ, Anderson IC (2007) Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol 16:4624–4636CrossRefPubMedGoogle Scholar
  7. Bruzone MC, Fontenla SB, Vohník M (2015) Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza 25:25–40CrossRefPubMedGoogle Scholar
  8. Colpaert JV, van Laere A, van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787–793CrossRefPubMedGoogle Scholar
  9. Dalpé Y (1986) Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol 103:391–396CrossRefGoogle Scholar
  10. Dalpé Y (1989) Ericoid mycorrhizal fungi in the Myxotrichaceae and Gymnoascaceae. New Phytol 113:523–527CrossRefGoogle Scholar
  11. Dearnaley JDW, Murray AJ, Mathieson MT (2009) Molecular identification of a mycorrhizal Sebacinaceae from the endangered Caladenia atroclavia (black clubbed spider orchid). Australas Mycol 28:45–50Google Scholar
  12. Dearnaley JDW, Martos F, Selosse M-A (2013) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, 2nd edn. The mycota IX. Springer, Berlin, pp 207–230Google Scholar
  13. Garnica S, Riess K, Bauer R, Oberwinkler F, Weiss M (2013) Phylogenetic diversity and structure of sebacinoid fungi associated with plant communities along an altitudinal gradient. FEMS Microbiol Ecol 83:265–278CrossRefPubMedGoogle Scholar
  14. Gorzelak MA, Hambleton S, Massicotte HB (2012) Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol 5:36–45CrossRefGoogle Scholar
  15. Grunewaldt-Stöcker G, von Alten H (2016) Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus? Mycorrhiza 26:429–440Google Scholar
  16. Hall TA (1999) BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Hashimoto Y, Fukukawa S, Kunishi A, Suga H, Richard F, Sauve M, Selosse M-A (2012) Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytol 195:620–630CrossRefPubMedGoogle Scholar
  18. Ishida TA, Nordin A (2010) No evidence that nitrogen enrichment affect fungal communities of Vaccinium roots in two contrasting boreal forest types. Soil Biol Biochem 42:234–243CrossRefGoogle Scholar
  19. Koch R (1878) Untersuchungen Über die Aetiologie der Wundinfectionskrankheiten. FCW Vogel, LeipzigCrossRefGoogle Scholar
  20. Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968CrossRefPubMedGoogle Scholar
  21. Kottke I, Haug I, Setaro S, Suárez J, Weiss M, Preussing M, Nebel M, Oberwinkler F (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23CrossRefGoogle Scholar
  22. Kühdorf K, Münzenberger B, Begerow D, Karasch-Wittmann C, Gómez-Laurito J, Hüttl RF (2014) Sebacina sp. is a mycorrhizal partner of Comarostaphylis arbutoides (Ericaceae). Mycol Prog 13:733–744CrossRefGoogle Scholar
  23. Lukešová T, Kohout P, Větrovský T, Vohník M (2015) The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS One 10:e0124752CrossRefPubMedPubMedCentralGoogle Scholar
  24. Massicotte HB, Melville LH, Peterson RL (2005) Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot 83:1057–1064CrossRefGoogle Scholar
  25. McLennan EI (1935) Non-symbiotic development of seedlings of Epacris impressa Labill. New Phytol 34:55–63CrossRefGoogle Scholar
  26. Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Shenk NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, Minnesota, pp 115–129Google Scholar
  27. Newsham KN, Bridge PD (2010) Sebacinales are associates of the leafy liverwort Lophozia excisa in the southern maritime Antarctic. Mycorrhiza 20:307–313CrossRefPubMedGoogle Scholar
  28. Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiss M, Garnica S, Zuccaro A (2013) Enigmatic Sebacinales. Mycol Prog 12:1–27CrossRefGoogle Scholar
  29. Oberwinkler F, Riess K, Bauer R, Garnica S (2014) Morphology and molecules: the Sebacinales, a case study. Mycol Prog 13:445–470CrossRefGoogle Scholar
  30. Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17CrossRefGoogle Scholar
  31. Pearson V, Read DJ (1973) Biology of mycorrhiza in Ericaceae 1. Isolation of endophyte and synthesis of mycorrhizas in aseptic culture. New Phytol 72:371–379CrossRefGoogle Scholar
  32. Qiang X, Weiss M, Kogel K-H, Schäfer P (2012) Piriformospora indica—a mutualistic basidiomycete with an exceptionally large plant host range. Mol Plant Pathol 5:508–518CrossRefGoogle Scholar
  33. Read DJ (1983) The biology of mycorrhiza in the Ericales. Can J Bot 61:985–1004CrossRefGoogle Scholar
  34. Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374CrossRefGoogle Scholar
  35. Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023CrossRefPubMedGoogle Scholar
  36. Riess K, Oberwinkler F, Bauer R, Garnica S (2014) Communities of endophytic Sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov. PLoS One 9:e94676CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefPubMedGoogle Scholar
  38. Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  39. Selosse M-A, Bauer R, Moyersoen B (2002) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195CrossRefGoogle Scholar
  40. Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–887CrossRefPubMedGoogle Scholar
  41. Selosse M-A, Dubois M-P, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069CrossRefPubMedGoogle Scholar
  42. Setaro S, Weiss M, Oberwinkler F, Kottke I (2006) Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol 169:355–365CrossRefPubMedGoogle Scholar
  43. Setaro S, Suárez JP, Herrera P, Cruz D, Kottke I (2013) Distinct but closely related Sebacinales form mycorrhizae with coexisting Ericaceae and Orchidaceae in a Neotropical mountain area. In: Varma A, Kost G, Oelmüller R (eds) Piriformospora indica: Sebacinales and their biotechnological applications. Soil biology, vol. 33. Springer, Berlin, pp 81–105CrossRefGoogle Scholar
  44. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337CrossRefGoogle Scholar
  45. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  46. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  48. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0 Beta. Sinauer, SunderlandGoogle Scholar
  49. Tedersoo L, Pellet P, Kõljalg U, Selosse M-A (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217CrossRefPubMedGoogle Scholar
  50. Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178CrossRefPubMedGoogle Scholar
  51. Urban A, Weiss M, Bauer R (2003) Ectomycorrhizae involving sebacinoid mycobionts. Mycol Res 107:3–14CrossRefPubMedGoogle Scholar
  52. Usuki F, Narisawa K (2005) Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chaetospira within roots ofRhododendron obsutum var. kaempferi. Mycorrhiza 15:61–64Google Scholar
  53. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423CrossRefPubMedGoogle Scholar
  54. Varma A, Verma S, Sudha SN, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744PubMedPubMedCentralGoogle Scholar
  55. Varma A, Kost G, Oelmüller R (eds) (2013) Piriformospora indica: Sebacinales and their biotechnological applications. Soil biology, vol. 33. Springer, BerlinGoogle Scholar
  56. Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  57. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedPubMedCentralGoogle Scholar
  58. Villarreal-Ruiz L, Neri-Luna C, Anderson IC, Alexander IJ (2012) In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis 56:67–75CrossRefGoogle Scholar
  59. Vincenot L, Tedersoo L, Richard F, Horcine H, Kõljalg U, Selosse M-A (2008) Fungal associates of Pyrola rotundifolia, a mixotrophic Ericaceae, from two Estonian boreal forests. Mycorrhiza 19:15–25CrossRefPubMedGoogle Scholar
  60. Vohník M, Albrechtová J (2011) The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot 46:373–386CrossRefGoogle Scholar
  61. Vohník M, Fendrych M, Albrechtová J, Vosátka M (2007a) Intracellular colonization of Rhododendron and Vaccinium roots by Cenococcum geophilum, Geomyces pannorum and Meliniomyces variabilis. Folia Microbiol 52:407–414CrossRefGoogle Scholar
  62. Vohník M, Fendrych M, Kolařík M, Gryndler M, Hršelová H, Albrechtová J, Vosátka M (2007b) The ascomycete Meliniomyces variabilis isolated from a sporocarp of Hydnotrya tulasnei (Pezizales) intracellularly colonizes roots of ecto- and ericoid mycorrhizal host plants. Czech Mycol 59:215–226Google Scholar
  63. Vohník M, Sadowsky JJ, Kohout P, Lhotáková Z, Nestby R, Kolařík M (2012a) Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS One 7:e39524CrossRefPubMedPubMedCentralGoogle Scholar
  64. Vohník M, Sadowsky JJ, Lukešová T, Albrechtová J, Vosátka M (2012b) Inoculation with wood decomposing basidiomycete, but not with root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate. Plant Soil 355:341–352CrossRefGoogle Scholar
  65. Vohník M, Mrnka L, Lukešová T, Bruzone MC, Kouhout P, Fehrer J (2013) The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6:281–292CrossRefGoogle Scholar
  66. Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191:515–527CrossRefPubMedGoogle Scholar
  67. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391CrossRefPubMedPubMedCentralGoogle Scholar
  68. Warcup J, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66:631–641CrossRefGoogle Scholar
  69. Wei J, Agerer R (2011) Two sebacinoid ectomycorrhizae on Chinese pine. Mycorrhiza 21:105–115CrossRefPubMedGoogle Scholar
  70. Weiss M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010CrossRefPubMedGoogle Scholar
  71. Weiss M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6:e16793CrossRefPubMedPubMedCentralGoogle Scholar
  72. Weiss M, Waller F, Zuccaro A, Selosse M-A (2016) Sebacinales—one thousand and one interactions with land plants. New Phytol 211:20–40CrossRefPubMedGoogle Scholar
  73. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  74. Wright MM, Cross R, Cousens RD, May TW, McLean CB (2010) Taxonomic and functional characterization of fungi from the Sebacina vermifera complex from common and rare orchids in the genus Caladenia. Mycorrhiza 20:375–390CrossRefPubMedGoogle Scholar
  75. Wurzburger N, Higgins BP, Hendrick RL (2011) Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub. Ecol Evol 2:65–79CrossRefGoogle Scholar
  76. Zhang C, Yin LJ, Dai SL (2009) Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. Mycorrhiza 19:417–423CrossRefPubMedGoogle Scholar
  77. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel K-H (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Vohník
    • 1
    • 2
  • Matěj Pánek
    • 3
    • 4
  • Judith Fehrer
    • 5
  • Marc-André Selosse
    • 6
    • 7
  1. 1.Department of Mycorrhizal SymbiosesInstitute of Botany ASCRPrůhoniceCzech Republic
  2. 2.Department of Experimental Plant Biology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  3. 3.Department of Forest Ecology, Faculty of Forestry and Wood TechnologyMendel University of Agriculture and Forestry in BrnoBrnoCzech Republic
  4. 4.Crop Research InstitutePrahaCzech Republic
  5. 5.DNA LaboratoryInstitute of Botany ASCRPrůhoniceCzech Republic
  6. 6.Institut de Systématique, Évolution, Biodiversité, Muséum National d’Histoire NaturelleSorbonne UniversitésParisFrance
  7. 7.Department of Plant Taxonomy and Nature ConservationUniversity of GdanskGdanskPoland

Personalised recommendations