Mycorrhiza

, Volume 26, Issue 6, pp 595–608 | Cite as

Consequences of inoculation with native arbuscular mycorrhizal fungi for root colonization and survival of Artemisia tridentata ssp. wyomingensis seedlings after transplanting

  • Bill E. Davidson
  • Stephen J. Novak
  • Marcelo D. Serpe
Original Article

Abstract

In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p = 0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p < 0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p = 0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p = 0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.

Keywords

Arbuscular mycorrhizal fungi Artemisia tridentata Seedling establishment Sagebrush steppe Shrublands 

Notes

Acknowledgments

This work was supported by grants from the U.S. Department of Agriculture-NIFA (grant No 2010-85101-20480) and the Great Basin Native Plant Project. The authors wish to thank Anne Halford from the Bureau of Land Management and Drs. James Smith and Merlin White from Boise State University for valuable discussions during this study. The authors also wish to thank two anonymous reviewers for their valuable comments and suggestions.

Supplementary material

572_2016_696_MOESM1_ESM.doc (206 kb)
ESM. 1 (DOC 205 kb)
572_2016_696_MOESM2_ESM.doc (204 kb)
ESM. 2 (DOC 204 kb)
572_2016_696_MOESM3_ESM.doc (208 kb)
ESM. 3 (DOC 207 kb)
572_2016_696_MOESM4_ESM.doc (30 kb)
ESM. 4 (DOC 29 kb)

References

  1. Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169:704–709. doi: 10.1016/j.jplph.2012.01.014 CrossRefPubMedGoogle Scholar
  2. Al-Agely A, Reeves F (1995) Inland sand dune mycorrhizae: effects of soil depth, moisture, and pH on colonization of Oryzopsis hymenoides. Mycologia 87:54–60CrossRefGoogle Scholar
  3. Aldridge CL, Boyce MS (2007) Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecol Appl 17:508–526. doi: 10.1890/05-1871 CrossRefPubMedGoogle Scholar
  4. Allen EB, Allen ME, Egerton-Warburton L, Corkidi L, Gomez-Pompa A (2003) Impacts of early- and late-seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecol Appl 13:1701–1717. doi: 10.1890/02-5309 CrossRefGoogle Scholar
  5. Allen MF (1983) Formation of vesicular arbuscular mycorrhizae in Atriplex gardneri chenopodiaceae seasonal response in a cold desert. Mycologia 75:773–776CrossRefGoogle Scholar
  6. Allen MF (2001) Modeling arbuscular mycorrhizal infection: is % infection an appropriate variable? Mycorrhiza 10:255–258. doi: 10.1007/s005720000081 CrossRefGoogle Scholar
  7. Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297. doi: 10.2136/vzj2006.0068 CrossRefGoogle Scholar
  8. Allen MF, Allen EB, Gomez-Pompa A (2005) Effects of mycorrhizae and nontarget organisms on restoration of a seasonal tropical forest in Quintana Roo, Mexico: factors limiting tree establishment. Restor Ecol 13:325–333. doi: 10.1111/j.1526-100X.2005.00041.x CrossRefGoogle Scholar
  9. Anderson JE, Inouye RS (2001) Landscape-scale changes in plant species abundance and biodiversity of a sagebrush steppe over 45 years. Ecol Monogr 71:531–556CrossRefGoogle Scholar
  10. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi: 10.1007/s005720100097 CrossRefGoogle Scholar
  11. Augé RM, Moore JL, Cho KH, Stutz JC, Sylvia DM, Al-Agely A, Saxton AM (2003) Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J Plant Physiol 160:1147–1156. doi: 10.1078/0176-1617-01154 CrossRefPubMedGoogle Scholar
  12. Augé RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 1–12.Google Scholar
  13. Baek K-H, Skinner DZ (2012) Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J Agric Chem Environ 01:34–40. doi: 10.4236/jacen.2012.11006 Google Scholar
  14. Bárzana G, Aroca R, Antonio Paz J, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017. doi: 10.1093/aob/mcs007 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bethlenfalvay GJ, Brown MS, Ames RN, Thomas RS (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72:565–571. doi: 10.1111/j.1399-3054.1988.tb09166.x CrossRefGoogle Scholar
  16. Boyd CS, Obradovich M (2014) Is pile seeding Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) an effective alternative to broadcast seeding? Rangel Ecol Manag 67:292–297CrossRefGoogle Scholar
  17. Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, Ditomaso JM, Hobbs R, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688. doi: 10.1641/0006-3568(2004)054[0677:eoiapo]2.0.co;2 CrossRefGoogle Scholar
  18. Carter KA, Smith JF, White MM, Serpe MD (2014) Assessing the diversity of arbuscular mycorrhizal fungi in semiarid shrublands dominated by Artemisia tridentata ssp. wyomingensis. Mycorrhiza 24:301–314. doi: 10.1007/s00572-013-0537-4 CrossRefPubMedGoogle Scholar
  19. Charley J, West N (1977) Micro-patterns of nitrogen mineralization activity in soils of some shrub-dominated semi-desert ecosystems of Utah. Soil Biol Biochem 9:357–365CrossRefGoogle Scholar
  20. Cox RD, Anderson VJ (2004) Increasing native diversity of cheatgrass-dominated rangeland through assisted succession. Rangel Ecol Manag 57:203–210CrossRefGoogle Scholar
  21. Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dalzell CR (2004) Post-fire establishment of vegetation communities following reseeding on southern Idaho’s Snake River Plain. MS Thesis (Boise State University)Google Scholar
  23. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass fire cycle, and global change. Annu Rev Ecol Syst 23:63–87. doi: 10.1146/annurev.ecolsys.23.1.63 CrossRefGoogle Scholar
  24. Davies KW, Bates JD, Miller RF (2007) The influence of Artemsia tridentata ssp wyomingensis on microsite and herbaceous vegetation heterogeneity. J Arid Environ 69:441–457. doi: 10.1016/j.jaridenv.2006.10.017 CrossRefGoogle Scholar
  25. Donovan LA, Ehleringer JR (1994) Carbon isotope discrimination, water-use efficiency, growth, and mortality in a natural shrub population. Oecologia 100:347–354. doi: 10.1007/BF00316964 CrossRefGoogle Scholar
  26. Doubkova P, Vlasakova E, Sudova R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161. doi: 10.1007/s11104-013-1610-7 CrossRefGoogle Scholar
  27. Gurr JE, Wicklow-Howard M (1994) VA mycorrhizal status of burned and unburned sagebrush habitat. Proc-Ecol Manag Annu Rangel, Boise, pp 132–135Google Scholar
  28. Hacke UG, Sperry JS, Pittermann J (2000) Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol 1:31–41. doi: 10.1078/1439-1791-00006 CrossRefGoogle Scholar
  29. Hardie K, Leyton L (1981) The influence of vesicular‐arbuscular mycorrhiza on growth and water relations of red clover. New Phytol 89:599–608CrossRefGoogle Scholar
  30. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156CrossRefGoogle Scholar
  31. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hou JQ, Romo JT (1998) Cold-hardiness of silver sagebrush seedlings. J Range Manag 51:704–708. doi: 10.2307/4003616 CrossRefGoogle Scholar
  33. Hunter JE, Schmidt FL (2000) Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. Int J Sel Assess 8:275–292. doi: 10.1111/1468-2389.00156 CrossRefGoogle Scholar
  34. Jakobsen T, Nielsen E (1983) Vesicular‐arbuscular mycorrhiza in field‐grown crops. New Phytol 93:401–413CrossRefGoogle Scholar
  35. Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24:109–119. doi: 10.1007/s00572-013-0515-x CrossRefPubMedGoogle Scholar
  36. Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419. doi: 10.1007/s11104-012-1406-1 CrossRefGoogle Scholar
  37. Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109. doi: 10.1139/b04-110 CrossRefGoogle Scholar
  38. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  39. Kozlowski TT, Pallardy SG (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334. doi: 10.1663/0006-8101(2002)068[0270:aaarow]2.0.co;2 CrossRefGoogle Scholar
  40. Latef AAHA, He C (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225. doi: 10.1007/s11738-010-0650-3 CrossRefGoogle Scholar
  41. Lambrecht SC, Shattuck AK, Loik ME (2007) Combined drought and episodic freezing effects on seedlings of low‐and high‐elevation subspecies of sagebrush (Artemisia tridentata). Physiol Plant 130:207–217CrossRefGoogle Scholar
  42. Larrucea ES, Brussard PF (2008) Habitat selection and current distribution of the pygmy rabbit in Nevada and California, USA. J Mammal 89:691–699. doi: 10.1644/07-mamm-a-199r.1 CrossRefGoogle Scholar
  43. Lim C-C, Krebs SL, Arora R (2014) Cold hardiness increases with age in juvenile Rhododendron populations. Front Plant Sci 5:1–7. doi: 10.3389/fpls.2014.00542 CrossRefGoogle Scholar
  44. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  45. Miller G, Suzuki N, Ciftci‐Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467CrossRefPubMedGoogle Scholar
  46. Mummey DL, Antunes PM, Rillig MC (2009) Arbuscular mycorrhizal fungi pre-inoculant identity determines community composition in roots. Soil Biol Biochem 41:1173–1179. doi: 10.1016/j.soilbio.2009.02.027 CrossRefGoogle Scholar
  47. Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90. doi: 10.1007/s11104-006-9091-6 CrossRefGoogle Scholar
  48. Mummey DL, Rillig MC (2007) Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. J Microbiol Methods 70:200–204. doi: 10.1016/j.mimet.2007.04.002 CrossRefPubMedGoogle Scholar
  49. Navarro Garcia A, Del Pilar Banon Arias S, Morte A, Jesus Sanchez-Blanco M (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64. doi: 10.1007/s00572-010-0310-x CrossRefPubMedGoogle Scholar
  50. Noss RF, LaRoe ET, Scott JM (1995) Endangered ecosystems of the United States: a preliminary assessment of loss and degradation. US Department of the Interior. National Biological Service Washington, DC, USAGoogle Scholar
  51. O’Dea ME (2007) Influence of mycotrophy on native and introduced grass regeneration in a semiarid grassland following burning. Restor Ecol 15:149–155. doi: 10.1111/j.1526-100X.2006.00199.x CrossRefGoogle Scholar
  52. Oehl F, Sieverding E, Ineichen K, Ris E, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283CrossRefPubMedGoogle Scholar
  53. Ouahmane L, Hafidi M, Thioulouse J, Ducousso M, Kisa M, Prin Y, Galiana A, Boumezzough A, Duponnois R (2007) Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. J Appl Microbiol 103:683–690. doi: 10.1111/j.1365-2672.2007.03296.x CrossRefPubMedGoogle Scholar
  54. Paluch EC, Thomsen MA, Volk TJ (2013) Effects of resident soil fungi and land use history outweigh those of commercial mycorrhizal inocula: testing a restoration strategy in unsterilized soil. Restor Ecol 21:380–389. doi: 10.1111/j.1526-100X.2012.00894.x CrossRefGoogle Scholar
  55. Pattinson G, Hammill K, Sutton B, McGee P (1999) Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycol Res 103:491–496CrossRefGoogle Scholar
  56. Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R, Hause B, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26:1–12. doi: 10.1007/s00572-015-0653-4 Google Scholar
  57. Perryman BL, Maier AM, Hild AL, Olson RA (2001) Demographic characteristics of 3 Artemisia tridentata Nutt. subspecies. J Range Manag 54:166–170. doi: 10.2307/4003178 CrossRefGoogle Scholar
  58. Querejeta JI, Barea JM, Allen MF, Caravaca F, Roldán A (2003) Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135:510–515. doi: 10.1007/s00442-003-1209-4 CrossRefPubMedGoogle Scholar
  59. Querejeta JI, Allen MF, Caravaca F, Roldan A (2006) Differential modulation of host plant delta C-13 and delta O-18 by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. New Phytol 169:379–387CrossRefPubMedGoogle Scholar
  60. Querejeta JI, Egerton-Warburton LM, Prieto I, Vargas R, Allen MF (2012) Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant Soil 355:63–73. doi: 10.1007/s11104-011-1080-8 CrossRefGoogle Scholar
  61. R-Development-Core-Team (2013) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  62. Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498. doi: 10.1128/aem.67.2.495-498.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Richardson BA, Kitchen SG, Pendleton RL, Pendleton BK, Germino MJ, Rehfeldt GE, Meyer SE (2014) Adaptive responses reveal contemporary and future ecotypes in a desert shrub. Ecol Appl 24:413–427CrossRefPubMedGoogle Scholar
  64. Rich JT, Neely JG, Paniello RC, Voelker CC, Nussembaum B, Wang EB (2010) A practical guide to understanding Kaplan-Meier curves. Otolaryngol--Head Neck Surg 143:331–336. doi: 10.1016/j.otohns.2010.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rillig MC, Field CB (2003) Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil 254:383–391CrossRefGoogle Scholar
  66. Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52. doi: 10.1111/j.1526-100X.2006.00188.x CrossRefGoogle Scholar
  67. Santos-Gonzalez JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613–5623. doi: 10.1128/aem.00262-07 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sardans J, Penuelas J (2007) Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21:191–201. doi: 10.1111/j.1365-2435.2007.01247.x CrossRefGoogle Scholar
  69. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. doi: 10.1111/j.1461-0248.2006.00910.x CrossRefPubMedGoogle Scholar
  70. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 323:3–20CrossRefGoogle Scholar
  71. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250. doi: 10.1146/annurev-arplant-042110-103846 CrossRefPubMedGoogle Scholar
  72. Stahl PD, Schuman GE, Frost SM, Williams SE (1998) Arbuscular mycorrhizae and water stress tolerance of Wyoming big sagebrush seedlings. Soil Sci Soc Am J 62:1309–1313CrossRefGoogle Scholar
  73. Stahl PD, Williams S, Christensen M (1988) Efficacy of native vesicular‐arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110:347–354CrossRefGoogle Scholar
  74. Suriyagoda LDB, Ryan MH, Renton M, Lambers H (2014) Plant responses to limited moisture and phosphorus availability: a meta-analysis. Adv Agron 124:143–200. doi: 10.1016/b978-0-12-800138-7.00004-8 CrossRefGoogle Scholar
  75. Symanczik S, Courty P-E, Boller T, Wiemkem A, Al-Yahya’ei MN (2015) Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 25:1–9. doi: 10.1007/s00572-015-0638-3 CrossRefGoogle Scholar
  76. Torrecillas E, del Mar AM, Roldan A (2012) Differences in the AMF diversity in soil and roots between two annual and perennial gramineous plants co-occurring in a Mediterranean, semiarid degraded area. Plant Soil 354:97–106. doi: 10.1007/s11104-011-1047-9 CrossRefGoogle Scholar
  77. Trent JD, Svejcar TJ, Blank RR (1994) Mycorrhizal colonization, hyphal lengths, and soil moisture associated with two Artemisia tridentata subspecies. West North Am Nat 54:291–300Google Scholar
  78. Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Schüepp H, Barea JM, Haselwandter K (eds) Gianinazzi S. Mycorrhizal Technology in Agriculture, Birkhäuser Basel, pp 137–149Google Scholar
  79. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor Package. J Stat Softw 36:1–48CrossRefGoogle Scholar
  80. Vilarino A, Arines J (1991) Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biol Biochem 23:1083–1087CrossRefGoogle Scholar
  81. Weinbaum BS, Allen MF, Allen EB (1996) Survival of arbuscular mycorrhizal fungi following reciprocal transplanting across the Great Basin. USA Ecol Appl 6:1365–1372CrossRefGoogle Scholar
  82. Wicklow-Howard M (1989) The occurrence of vesicular-arbuscular mycorrhizae in burned areas of the Snake River Birds of Prey Area, Idaho. Mycotaxon 34:253–257Google Scholar
  83. Wu Q-S, Zou Y-N (2010) Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci Hortic 125:289–293. doi: 10.1016/j.scienta.2010.04.001 CrossRefGoogle Scholar
  84. Wu QS, Zou YN, Xia RX (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172CrossRefGoogle Scholar
  85. Yang F, Li G, Zhang DE, Christie P, Li XL, Gai P (2010) Geographical and plant genotype effects on the formation of arbuscular mycorrhiza in Avena sativa and Avena nuda at different soil depths. Biol Fertil Soils 46:435–443CrossRefGoogle Scholar
  86. Zhou Z, Ma H, Liang K, Huang G, Pinyopusarerk K (2012) Improved tolerance of teak (Tectona grandis L.f.) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. J Plant Growth Regul 31:427–435. doi: 10.1007/s00344-011-9252-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bill E. Davidson
    • 1
  • Stephen J. Novak
    • 1
  • Marcelo D. Serpe
    • 1
  1. 1.Department of Biological SciencesBoise State UniversityBoiseUSA

Personalised recommendations