Advertisement

Mycorrhiza

, Volume 26, Issue 6, pp 587–594 | Cite as

Truffle diversity (Tuber, Tuberaceae) in British Columbia

  • Shannon M. Berch
  • Gregory Bonito
Original Article

Abstract

To improve baseline data for the developing truffle industry in British Columbia, we compiled existing Tuber species sequences from published and unpublished studies and generated new ITS sequences for truffles belonging to Tuber collected in the province. In doing so, we obtained evidence that 13 species of Tuber occur in the province, including six introduced and seven native species, two of which are putative undescribed species. Of the native species, the Tuber anniae species complex is widely distributed in the province while Tuber beyerlei appears to be much more restricted in distribution. Four of the introduced species have commercial value (Tuber melanosporum, Tuber aestivum, Tuber brumale, and Tuber borchii) as do two of the native species (Tuber gibbosum and Tuber oregonense). Focused sampling on likely tree hosts, both hardwood and Pinaceae species, as well as in currently unexplored parts of the province seems likely to expand our knowledge of the diversity and distribution of Tuber species in British Columbia.

Keywords

Tuber Tuberaceae British Columbia Distribution Diversity Truffles 

Notes

Acknowledgments

We appreciate the contributions made by Paul de la Bastide and Alexandra Netter-Glangeaud of MycoLogic Inc. for sequencing Tuber collections for this paper. Many colleagues provided sequences generated by their own research or collections of Tuber truffles for sequencing: Melanie Jones, Dan Durall, Valerie Ward, and Brian Pickles, University of British Columbia Okanagan; Brendan Tweig, University of California; Marty Kranabetter and Bill Chapman, BC Ministry of Forests, Lands, and Natural Resources; Martin Hartmann, Swiss Federal Research Institute WSL; Kirsten Kilde, Keith Egger, Linda Tackaberry, and Hugues Massicotte, University of Northern British Columbia. Sharmin Gamiet of Abbotsford clarified the origin of UBC21620. Brooke Fochuk and her trained truffle dog Dexter of Coquitlam provided many truffles for this study.

References

  1. Berch SM, Bonito G (2014) Cultivation of Mediterranean species of Tuber (Tuberaceae) in British Columbia, Canada. Mycorrhiza 24:473–479. doi: 10.1007/s00572-014-0562-y CrossRefPubMedGoogle Scholar
  2. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806. doi: 10.1098/rspb.2004.2807
  3. Bonito G, Gryganskyi AP, Trappe JM, Vilgalys R (2010a) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19:49945008. doi: 10.1111/j.1365-294X.2010.04855.x CrossRefGoogle Scholar
  4. Bonito G, Trappe JM, Rawlinson P, Vilgalys R (2010b) Improved resolution of major clades within Tuber and taxonomy of species within the Tuber gibbosum complex. Mycologia 102:1042–1057. doi: 10.3852/09-213 CrossRefPubMedGoogle Scholar
  5. Bonito G, Smith GE, Brenneman T, Vilgalys R (2012) Assessing ectomycorrhizal fungal spore banks of truffle producing soils with pecan seedling trap-plants. Plant Soil 356:357–366. doi: 10.1007/s11104-012-1127-5 CrossRefGoogle Scholar
  6. Bulman SR, Visnovsky SR, Hall IR, Guerin-Laguete A, Wang Y (2010) Molecular and morphological identification of truffle producing Tuber species in New Zealand. Mycol Prog 9:205–214. doi: 10.1007/s11557-009-0626-0 CrossRefGoogle Scholar
  7. Edgar RC (2004) Muscle: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. doi: 10.1109/CSB.2004.1332560
  8. Guevara G, Bonito G, Trappe JM, Cazares E, Williams G, Healy RA, Schadt C, Vilgalys R (2013) New North American truffles (Tuber spp.) and their ectomycorrhizal associations. Mycologia 105:194–209. doi: 10.3852/12-087 CrossRefPubMedGoogle Scholar
  9. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  10. Hartmann M, Howes CG, VanInsberghe D, Yu H, Bachar D, Christen R, Nilsson RH, Hallam SJ, Mohn WW (2012) Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J 6:2199–2218. doi: 10.1038/ismej.2012.84 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754
  12. Jones MD, Phillips LA, Treu R, Ward V, Berch SM (2012) Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in central British Columbia. Appl Soil Ecol 60:29–40. doi: 10.1016/j.apsoil.2012.01.010 CrossRefGoogle Scholar
  13. Jones MD, Twieg BD, Durall DM, Berch SM (2008) Location relative to a retention patch affects the ECM fungal community more than patch size in the first season after timber harvesting on Vancouver Island, British Columbia. Forest Ecol Manag 255:1342–1352. doi: 10.1016/j.foreco.2007.10.042 CrossRefGoogle Scholar
  14. Kranabetter JM, Stoehr M, O'Neill GA (2015) Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir. New Phytol 206:1135–1144. doi: 10.1111/nph.13287 CrossRefPubMedGoogle Scholar
  15. Lefevre C (2013) Native and cultivated truffles of North America. Chapter 12 in Edible Ectomycorrhizal Mushrooms, edited by Zambonelli A and Bonito G. Soil Biol 34:209–226. doi: 10.1007/978-3-642-33823-6_12
  16. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.5. http://mesquiteproject.org
  17. Maser C, Claridge AW, Trappe M (2008) Trees, truffles, and beasts: how forests function. Rutgers University PressGoogle Scholar
  18. Pickles BJ, Gorzelak MA, Green DS, Egger KN, Massicotte HB (2015) Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in ‘novel’ soils. Mycorrhiza 25(7):517–531. doi: 10.1007/s00572-015-0630-y CrossRefPubMedGoogle Scholar
  19. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0 b10. Sinauer Associates, SunderlandGoogle Scholar
  20. Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447. doi: 10.1111/j.1469-8137.2007.02173.x CrossRefPubMedGoogle Scholar
  21. Wang XH, Benucci GMN, Xie XD, Bonito G, Leisola M, Liu PG, Shamekh S (2013) Morphological, mycorrhizal and molecular characterization of Finnish truffles belonging to the Tuber anniae species-complex. Fungal Ecol 6:269–280. doi: 10.1016/j.funeco.2013.03.002 CrossRefGoogle Scholar
  22. White, TJ, Bruns TD, Lee SB, Taylor, JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, Calif, p. 315–322. doi: 10.1016/b978-0-12-372180-8.50042-1

Copyright information

© Her Majesty the Queen in Right of Canada 2016

Authors and Affiliations

  1. 1.British Columbia Ministry of EnvironmentVictoriaCanada
  2. 2.Michigan State UniversityEast LansingUSA

Personalised recommendations