, Volume 26, Issue 6, pp 541–552 | Cite as

Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar

  • M. Rafter
  • K. Yokoya
  • E. J. Schofield
  • L. W. Zettler
  • V. Sarasan
Original Article


Orchids, particularly terrestrial taxa, rely mostly on basidiomycete fungi in the Cantharellales and Sebacinales that trigger the process of seed germination and/or initiate the full development of the seedling. During the course of development, orchids may associate with the same fungus, or they may enlist other types of fungi for their developmental needs leading to resilience in a natural setting. This study examined in vitro seed germination and seedling developmental behavior of Cynorkis purpurea, a terrestrial orchid from the Central Highlands of Madagascar. This species is mostly restricted to gallery forests in the Itremo Massif, in moist substrate between rocks bordering streams. The main objective was to understand the influence of diverse mycorrhizal fungi on seed germination and further development of C. purpurea. The study aims to compare symbiotic versus asymbiotic germination and seedling development with seeds and fungi collected from a 13-km2 area in the Itremo region. Seeds collected from the wild were sown with diverse orchid mycorrhizal fungi (OMF) spanning 12 operational taxonomic units (OTUs) in three genera (Tulasnella, Ceratobasidium, and Sebacina) acquired from different habitats. Treatments were assessed in terms of the percentage of germinated seeds and fully developed seedlings against those in asymbiotic control media treatments. Overall, OMF significantly improved seedling development within the 12-week experiment period. Sebacina as a genus was the most effective at promoting seedling development of C. purpurea, as well as having the ability to enter into successful symbiotic relationships with orchids of different life forms; this new knowledge may be especially useful for orchid conservation practiced in tropical areas like Madagascar. A Sebacina isolate from an epiphytic seedling of Polystachya concreta was the most effective at inducing rapid seedling development and was among the five that outperformed fungi isolated from roots of C. purpurea. C. purpurea was found to be a mycorrhizal generalist, despite its specific habitat preference, highlighting the complex interaction between the plant, fungi, and the environment. The potential impact on conservation strategies of understanding the requirements for orchid seed germination and development by identifying and using OMF from diverse sources is discussed in detail.


Sebacina Ceratobasidium Tulasnella Mycorrhizal fungi Orchidaceae Seedlings Conservation In vitro 


  1. Aggarwal S, Zettler LW (2010) Reintroduction of an endangered terrestrial orchid, Dactylorhiza hatagirea (D. Don) Soo, assisted by symbiotic seed germination: first report from the Indian subcontinent. Nat Sci 8:139–145Google Scholar
  2. Alexander C, Alexander IJ, Hadley G (1984) Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol 97:401–411CrossRefGoogle Scholar
  3. Anderson AB (1991) Symbiotic and asymbiotic germination and growth of Spiranthes magnicamporum (Orchidaceae). Lindleyana 6:183–186Google Scholar
  4. Arditti J (1992) Fundamentals of orchid biology. Wiley, New YorkGoogle Scholar
  5. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806CrossRefGoogle Scholar
  6. Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61CrossRefPubMedGoogle Scholar
  7. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495CrossRefPubMedGoogle Scholar
  8. Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416CrossRefPubMedGoogle Scholar
  9. Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cribb P, Hermans J (2007) The conservation of Madagascar’s orchids. A model for an integrated conservation project. Lankesteriana 7:255–261Google Scholar
  11. Cribb P, Hermans J (2009) Field guide to the orchids of Madagascar. Royal Botanic Gardens, Kew, RichmondGoogle Scholar
  12. Currah RS, Zelmer CD, Hambleton S, Richardson KA (1997) Fungi from orchid mycorrhizas. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives, VII. Springer, Netherlands, pp 117–170CrossRefGoogle Scholar
  13. Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486CrossRefPubMedGoogle Scholar
  14. Dearnaley JDW, Martos F, Selosse M-A (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, vol 9, 2nd edn. Springer, Berlin Heidelberg, pp 207–230CrossRefGoogle Scholar
  15. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A 103:18450–18457CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dowling N, Jusaitis M (2012) Asymbiotic in vitro germination and seed quality assessment of Australian terrestrial orchids. Aust J Bot 60:592–601CrossRefGoogle Scholar
  17. Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides Press, PortlandGoogle Scholar
  18. Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69:1015–1023CrossRefGoogle Scholar
  19. Hajong S, Kumaria S, Tandon P (2013) Compatible fungi, suitable medium, and appropriate developmental stage essential for stable association of Dendrobium chrysanthum. J Basic Microbiol 53:1025–1033CrossRefPubMedGoogle Scholar
  20. Hashimoto Y, Fukukawa S, Kunishi A, Suga H, Richard F, Sauve M, Selosse M-A (2012) Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytol 195:620–630CrossRefPubMedGoogle Scholar
  21. Hirano T, Godo T, Miyoshi K, Ishikawa K, Ishikawa M, Mii M (2009) Cryopreservation and low-temperature storage of seeds of Phaius tankervilleae. Plant Biotechnol Rep 3:103–109CrossRefGoogle Scholar
  22. Hosomi ST, Custodio CC, Seaton PT, Marks TR, Machado-Neto NB (2012) Improved assessment of viability and germination of Cattleya (Orchidaceae) seeds following storage. In Vitro Cell Dev Biol Plant 48:127–136CrossRefGoogle Scholar
  23. Huynh TT, McLean CB, Coates F, Lawrie AC (2004) Effect of developmental stage and peloton morphology on success in isolation of mycorrhizal fungi in Caladenia formosa (Orchidaceae). Aust J Bot 52:231–241CrossRefGoogle Scholar
  24. Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  25. Johnson TR, Stewart SL, Dutra D, Kane ME, Richardson L (2007) Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)—preliminary evidence for the symbiotic culture advantage. Plant Cell Tissue Organ Cult 90:313–323CrossRefGoogle Scholar
  26. Lee YI (2011) In vitro culture and germination of terrestrial Asian orchid seeds. Methods Mol Biol 710:53–62CrossRefPubMedGoogle Scholar
  27. Mahendran G, Muniappan V, Ashwini M, Muthukumar T, Narmatha Bai V (2013) Asymbiotic seed germination of Cymbidium bicolor Lindl. (Orchidaceae) and the influence of mycorrhzal fungus on seedling development. Acta Physiol Plant 35:829–840CrossRefGoogle Scholar
  28. McNair JN, Sunkara A, Frobish D (2012) How to analyse seed germination data using statistical time-to-event analysis: non-parametric and semi-parametric methods. Seed Sci Res 22:77–95CrossRefGoogle Scholar
  29. Merritt DJ, Hay FR, Swarts ND, Sommerville KD, Dixon KW (2014) Ex situ conservation and cryopreservation of orchid germplasm. Int J Plant Sci 175:46–58CrossRefGoogle Scholar
  30. Mitchell RB (1989) Growing hardy orchids from seeds at Kew. The Plantsman 11:152–169Google Scholar
  31. Nikabadi S, Bunn E, Stevens J, Newman B, Turner SR, Dixon KW (2014) Germination responses of four native terrestrial orchids from south-west Western Australia to temperature and light treatments. Plant Cell Tissue Organ Cult 118:559–569CrossRefGoogle Scholar
  32. Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiss M, Garnica S, Zuccaro A (2013) Enigmatic sebacinales. Mycol Prog 12:1–27CrossRefGoogle Scholar
  33. Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858CrossRefGoogle Scholar
  34. Otero JT, Flanagan NS, Herre EA, Ackerman JD, Bayman P (2007) Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am J Bot 94:1944–1950CrossRefPubMedGoogle Scholar
  35. Pandey M, Sharma J, Taylor DL, Yadom VL (2013) A narrowly endemic photosynthetic orchid is non-specific in its mycorrhizal associations. Mol Ecol 22:2341–2354CrossRefPubMedGoogle Scholar
  36. Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869CrossRefGoogle Scholar
  37. Quay L, McComb JA, Dixon KW (1995) Methods for ex vitro germination of Australian terrestrial orchids. HortSci 30:1445–1446Google Scholar
  38. Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163CrossRefGoogle Scholar
  40. Rasmussen HN, Rasmussen FN (2014) Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae. Bot J Linn Soc 175:313–327CrossRefGoogle Scholar
  41. Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Am J Bot 80:1374–1378CrossRefGoogle Scholar
  42. Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402CrossRefPubMedGoogle Scholar
  43. Reed BM, Sarasan V, Kane M, Bunn E, Pence VC (2011) Biodiversity conservation and conservation biotechnology tools. In Vitro Cell Dev Biol Plant 47:1–4CrossRefGoogle Scholar
  44. Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Bonfante P, Selosse M-A (2009) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610CrossRefPubMedPubMedCentralGoogle Scholar
  45. Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426CrossRefPubMedGoogle Scholar
  46. Shefferson RP, Weiss M, Kull T, Taylor DL (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626CrossRefPubMedGoogle Scholar
  47. Shefferson RP, Taylor DL, Weiss M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee YI (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390CrossRefPubMedGoogle Scholar
  48. Shimura H, Koda Y (2005) Enhanced symbiotic seed germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol Plant 123:281–287CrossRefGoogle Scholar
  49. Stewart SL, Kane ME (2007) Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cell Dev Biol Plant 43:178–186CrossRefGoogle Scholar
  50. Stokstad E (2015) Orchids’ dazzling diversity explained. Science 349:914CrossRefPubMedGoogle Scholar
  51. Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556CrossRefPubMedPubMedCentralGoogle Scholar
  52. Swarts ND, Sinclair EA, Francis A, Dixon KW (2010) Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol 19:3226–3242CrossRefPubMedGoogle Scholar
  53. Tyson P (2000) The eighth continent: life, death and discovery in the lost world of Madagascar. William Morrow (Harper Collins) Publishers, New YorkGoogle Scholar
  54. Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  55. Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392CrossRefGoogle Scholar
  56. Weiss M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010CrossRefPubMedGoogle Scholar
  57. Weiss M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6, e16793CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wells K (1994) Jelly fungi, then and now! Mycologia 86:18–48CrossRefGoogle Scholar
  59. Whitman M, Medler M, Randriamanindry JJ, Rabakonandrianina E (2011) Conservation of Madagascar’s granite outcrop orchids: the influence of fire and moisture. Lankesteriana 11:55–67CrossRefGoogle Scholar
  60. Yamazaki J, Miyoshi K (2006) In vitro asymbiotic germination of immature seed and formation of protocorm by Cephalanthera falcata (Orchidaceae). Ann Bot 98:1197–1206CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150CrossRefPubMedGoogle Scholar
  62. Yokoya K, Zettler LW, Kendon JP, Bidartondo MI, Stice AL, Skarha S, Corey LL, Knight AC, Sarasan V (2015) Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar. Mycorrhiza 25:611–625CrossRefPubMedGoogle Scholar
  63. Zettler LW (1997) Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana 18:188–194Google Scholar
  64. Zettler LW, Piskin KA (2011) Mycorrhizal fungi from protocorms, seedlings and mature plants of the Eastern Prairie Fringed Orchid, Platanthera leucophaea (Nutt.) Lindley: a comprehensive list to augment conservation. Am Midl Nat 166:29–39CrossRefGoogle Scholar
  65. Zettler LW, Poulter SB, McDonald KI, Stewart SL (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortScience 42:135–139Google Scholar
  66. Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24:487–499CrossRefPubMedGoogle Scholar
  67. Zotz G (2013) The systematic distribution of vascular epiphytes – a critical update. Bot J Linn Soc 171:453–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Rafter
    • 1
  • K. Yokoya
    • 1
  • E. J. Schofield
    • 1
  • L. W. Zettler
    • 2
  • V. Sarasan
    • 1
  1. 1.Royal Botanic GardensRichmondUK
  2. 2.Department of BiologyIllinois CollegeJacksonvilleUSA

Personalised recommendations