Advertisement

Mycorrhiza

, Volume 26, Issue 6, pp 515–527 | Cite as

Characterization of the reproductive mode and life cycle of the whitish truffle T. borchii

  • Beatrice Belfiori
  • Claudia Riccioni
  • Francesco Paolocci
  • Andrea Rubini
Original Article

Abstract

Truffles are the fruiting structures of ascomycetes in the genus Tuber. Because of their economic importance, truffles have been cultivated for many years using artificially inoculated host plants. Nevertheless, the life cycle and reproductive mode of Tuber spp. are still poorly understood. In filamentous ascomycetes, sexual reproduction is genetically controlled by the mating-type (MAT) locus. Among Tuber spp., the MAT locus has been recently characterized in the black truffles Tuber melanosporum and Tuber indicum. Here, by using sequence information derived from these species and from a Tuber borchii expressed sequence tag (EST) showing similarity to the mat1 gene of Alternaria brassicicola, we embarked on a chromosome-walking procedure to sequence the complete MAT region of T. borchii. This fungus produces highly commercialized whitish truffles and represents a model species for addressing basic questions concerning the life cycle of Tuber spp. We show that T. borchii is heterothallic, as its MAT locus is organized into two idiomorphs, each harbored by different mycelial strains. The alignment of the MAT locus from black truffles and T. borchii reveals that extensive sequence rearrangements and inversions occurred between these species. Moreover, by coupling mating-type analyses to karyological observation, we show that mycelia isolated from ascocarps and mycorrhizae are formed by homokaryotic hyphae.

Keywords

Mating type Tuber borchii Life cycle Truffles 

Notes

Acknowledgments

The authors are grateful to Mr. L. Tanzi and Mr. L. Gallo for providing some truffle samples used in this study and to Dr. F. Martin and Dr. C. Murat (INRA France) for their support and encouragement throughout the progress of the research work. This study was supported by Regione Umbria (project: “Indagini ecologiche, genetiche e molecolari per potenziare la produzione di tartufi pregiati in Umbria”) and the Italian Ministry of Education, Universities and Research (PRIN 2008 project: “Il ciclo biologico del tartufo: interazioni genotipo-ambiente”).

Compliance with ethical standards

Conflict of interest

The authors are named on a patent application entitled “Molecular method for the identification of mating-type genes of truffles species,” serial number WO/2012/032098; PCT/EP2011/065501, filed on 07-09-2011 by CNR, Plant Genetics Institute and INRA.

Supplementary material

572_2016_689_MOESM1_ESM.pdf (22 kb)
ESM 1 (PDF 22 kb)
572_2016_689_MOESM2_ESM.pdf (171 kb)
ESM 2 (PDF 171 kb)
572_2016_689_MOESM3_ESM.pdf (14 kb)
ESM 3 (PDF 13 kb)
572_2016_689_MOESM4_ESM.pdf (8 kb)
ESM 4 (PDF 8 kb)
572_2016_689_MOESM5_ESM.pdf (508 kb)
ESM 5 (PDF 507 kb)
572_2016_689_MOESM6_ESM.pdf (25 kb)
ESM 6 (PDF 24 kb)
572_2016_689_MOESM7_ESM.pdf (1.2 mb)
ESM 7 (PDF 1229 kb)

References

  1. Ambra R, Grimaldi B, Zamboni S, Filetici P, Macino G, Ballario P (2004) Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1 the homologue of the blue-light photoreceptor of Neurospora crassa. Fungal Genet Biol 41:688–697CrossRefPubMedGoogle Scholar
  2. Amicucci A, Zambonelli A, Giomaro G, Potenza L, Stocchi V (1998) Identification of ectomycorrhizal fungi of the genus Tuber by species-specific ITS primers. Mol Ecol 7:273–277CrossRefGoogle Scholar
  3. Belfiori B, Riccioni C, Paolocci F, Rubini A (2013) Mating type locus of Chinese black truffles reveals heterothallism and the presence of cryptic species within the Tuber indicum species complex. PLoS One 8:e82353. doi: 10.1371/journal.pone.0082353 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertault G, Raymond M, Berthomieu A, Callot G, Fernandez D (1998) Trifling variation in truffles. Nature 394:734CrossRefGoogle Scholar
  5. Billiard S, López-Villavicencio M, Hood E, Giraud T (2012) Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J Evol Biol 25:1020–1038CrossRefPubMedGoogle Scholar
  6. Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19:4994–5008CrossRefPubMedGoogle Scholar
  7. Bonito G, Smith ME, Nowak M et al (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLoS One 8:e52765CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonuso E, Zambonelli A, Bergemann SE, Iotti M, Garbelotto M (2010) Multilocus phylogenetic and coalescent analyses identify two cryptic species in the Italian bianchetto truffle, Tuber borchii Vittad. Conserv Genet 11:1453–1466CrossRefGoogle Scholar
  9. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1995) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  10. Callot G (1999) La truffe, la terre, la vie. INRA, ParisGoogle Scholar
  11. Ceccaroli P, Saltarelli R, Buffalini M, Piccoli G, Stocchi V (1999) Three different forms of hexokinase are identified during Tuber borchii mycelium growth. Mol Cell Biochem 194:71–77CrossRefPubMedGoogle Scholar
  12. Ceccaroli P, Saltarelli R, Cesari P, Pierleoni R, Sacconi C, Vallorani L, Rubini P, Stocchi V, Martin F (2003) Carbohydrate and amino acid metabolism in Tuber borchii mycelium during glucose utilization: a 13C NMR study. Fungal Genet Biol 39:168–175CrossRefPubMedGoogle Scholar
  13. Chitrampalam P, Inderbitzin P, Maruthachalam K, Wu BM, Subbarao KV (2013) The Sclerotinia sclerotiorum mating type locus (MAT) contains a 3.6-kb region that is inverted in every meiotic generation. PLoS One 8:e56895CrossRefPubMedPubMedCentralGoogle Scholar
  14. Conde-Ferráez L, Waalwijk C, Canto-Canché BB, Kema GH, Crous PW, James AC, Abeln ECA (2007) Isolation and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana. Mol Plant Pathol 8:111–120CrossRefPubMedGoogle Scholar
  15. Debuchy R, Berteaux-Lecellier V, Silar P (2010) Mating systems and sexual morphogenesis in ascomycetes. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM, Washington, pp 501–526CrossRefGoogle Scholar
  16. Fasolo-Bonfante P, Brunel A (1972) Caryological features in a mycorrhizal fungus: “Tuber Melanosporum” Vitt. Allionia 18:5–11Google Scholar
  17. Giomaro G, Zambonelli A, Sisti D, Cecchini M, Evangelista V, Stocchi V (2000) Anatomical and morphological characterization of mycorrhizas of five strains of Tuber borchii Vittad. Mycorrhiza 10:107–114CrossRefGoogle Scholar
  18. Giomaro GM, Sisti D, Zambonelli A (2005) Cultivation of edible ectomycorrhizal fungi by in vitro mycorrhizal synthesis. In: Declerck S, Strullu DG, Fortin A (eds) In vitro culture of mycorrhizas. Springer, Berlin Heidelberg, pp 253–267CrossRefGoogle Scholar
  19. Gladefelter AS (2006) Nuclear anarchy: asynchronous mitosis in multinucleated fungal hyphae. Curr Opin Microbiol 9:547–52CrossRefGoogle Scholar
  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res 41:95–98Google Scholar
  21. Hall I, Brown G, Zambonelli A (2007) Taming the truffle. The history, lore, and science of the ultimate mushroom. Timber, PortlandGoogle Scholar
  22. Hanson SJ, Byrne KP, Wolfe KH (2014) Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. Proc Natl Acad Sci 111(45):E4851–E4858CrossRefPubMedPubMedCentralGoogle Scholar
  23. Idnurm A (2011) Sex and speciation: the paradox that non-recombining DNA promotes recombination. Fungal Biol Rev 25:121–127CrossRefPubMedPubMedCentralGoogle Scholar
  24. Iotti M, Amicucci A, Stocchi V, Zambonelli A (2002) Morphological and molecular characterization of mycelia of some Tuber species in pure culture. New Phytol 155:499–505CrossRefGoogle Scholar
  25. Iotti M, Piattoni F, Zambonelli A (2012a) Techniques for host plant inoculation with truffles and other edible ectomycorrhizal mushrooms. In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms. Springer, Berlin Heidelberg, pp 145–161CrossRefGoogle Scholar
  26. Iotti M, Rubini A, Tisserant E, Kholer A, Paolocci F, Zambonelli A (2012b) Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biol 116:261–275CrossRefPubMedGoogle Scholar
  27. Jackson D, Lawson T, Villafane R, Gary L (2013) Modeling the structure of yeast MATa1: an HMG-box motif with a C-terminal helical extension. Open J Biophys 3:1–12CrossRefGoogle Scholar
  28. Jeandroz S, Murat C, Wang Y, Bonfante P, Le Tacon F (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeogr 35:815–829CrossRefGoogle Scholar
  29. Lacourt I, Duplessis S, Abbà S, Bonfante P, Martin F (2002) Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii. Appl Environ Microb 68:4574–4582CrossRefGoogle Scholar
  30. Lanfranco L, Arlorio M, Matteucci A, Bonfante P (1995) Truffles: their life cycle and molecular characterization. In: Stocchi V, Bonfante P, Nuti P (eds) Biotechnology of ectomycorrhizae. Molecular approach. Plenum, New York, pp 139–149CrossRefGoogle Scholar
  31. Le Tacon F, Rubini A, Murat C et al (2015) Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum Vittad.) Ann For Sci doi: 10.1007/s13595-015-0461-1
  32. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472CrossRefPubMedGoogle Scholar
  33. Martin F, Kohler A, Murat C et al (2010a) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038CrossRefPubMedGoogle Scholar
  34. Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R (2010b) Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 5:e15199CrossRefPubMedPubMedCentralGoogle Scholar
  35. Martin F, Murat C, Paolocci F, Rubini A, Riccioni C, Belfiori B, Arcioni S (2012) Molecular method for the identification of mating type genes of truffles species European Patent Application EP2426215Google Scholar
  36. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  37. Mischiati P, Fontana F (1993) In vitro culture of Tuber magnatum mycelium isolated from mycorrhizas. Mycol Res 97:40–44CrossRefGoogle Scholar
  38. Montecchi A, Sarasini M (2000) Funghi ipogei d’Europa. Associazione Micologica Bresadola, TrentoGoogle Scholar
  39. Murat C, Rubini A, Riccioni C et al (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187CrossRefPubMedGoogle Scholar
  40. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623PubMedPubMedCentralGoogle Scholar
  41. Paolocci F, Rubini A, Granetti B, Arcioni S (1999) Rapid molecular approach for a reliable identification of Tuber spp. ectomycorrhizas. FEMS Microbiol Ecol 28:23–30CrossRefGoogle Scholar
  42. Paolocci F, Rubini A, Riccioni C, Arcioni S (2006) Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol 72:2390–2393CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pegler DN, Spooner BM, Young TWK (1993) British truffles: a revision of British hypogeous fungi. Royal Botanic Garden, KewGoogle Scholar
  44. Polidori E, Ceccaroli P, Saltarelli R, Guescini M, Menotta M, Agostini D, Palma F, Stocchi V (2007) Hexose uptake in the plant symbiotic ascomycete Tuber borchii Vittadini: biochemical features and expression pattern of the transporter TBHXT1. Fungal Genet Biol 44:187–198CrossRefPubMedGoogle Scholar
  45. Riccioni C, Belfiori B, Rubini A, Passeri V, Arcioni S, Paolocci F (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180:466–478CrossRefPubMedGoogle Scholar
  46. Rubini A, Paolocci F, Granetti B, Arcioni S (1998) Single step molecular characterization of morphologically similar black truffle species. FEMS Microbiol Lett 164:7–12CrossRefGoogle Scholar
  47. Rubini A, Paolocci F, Riccioni C, Vendramin GG, Arcioni S (2005) Genetic and phylogeographic structures of the symbiotic fungus Tuber magnatum. Appl Environ Microbiol 71:6584–6589CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rubini A, Riccioni C, Arcioni S, Paolocci F (2007) Troubles with truffles: unveiling more of their biology. New Phytol 174:256–259CrossRefPubMedGoogle Scholar
  49. Rubini A, Belfiori B, Riccioni C, Arcioni S, Martin F, Paolocci F (2011a) Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol 89:723–735CrossRefGoogle Scholar
  50. Rubini A, Belfiori B, Riccioni C et al (2011b) Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189:710–722CrossRefPubMedGoogle Scholar
  51. Rubini A, Belfiori B, Riccioni C, Paolocci F (2012) In: Zambonelli A, Bonito GM (eds) Genomics of Tuber melanosporum: new knowledge concerning reproductive biology, symbiosis, and aroma production. Springer Heidelberg, Berlin, pp 57–72Google Scholar
  52. Rubini A, Riccioni C, Belfiori B, Paolocci F (2014) Impact of the competition between mating types on the cultivation of Tuber melanosporum: Romeo and Juliet and the matter of space and time. Mycorrhiza 24:19–27CrossRefGoogle Scholar
  53. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  54. Sisti D, Zambonelli A, Giomaro G, Rossi I, Ceccaroli P, Citterio B, Benedetti PA, Stocchi V (1998) In vitro mycorrhizal synthesis of micropropagated Tilia platyphyllos Scop. plantlets with Tuber borchii Vittad. mycelium in pure culture. Acta Horticult 457:379–387CrossRefGoogle Scholar
  55. Sun Y, Corcoran P, Menkis A, Whittle CA, Andersson SG, Johannesson H (2012) Large-scale introgression shapes the evolution of the mating-type chromosomes of the filamentous ascomycete Neurospora tetrasperma. PLoS Genet 8:e1002820CrossRefPubMedPubMedCentralGoogle Scholar
  56. Turgeon BG (1998) Application of mating type gene technology to problems in fungal biology. Annu Rev Phytopathol 36:115–137CrossRefPubMedGoogle Scholar
  57. Turgeon BG, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5CrossRefPubMedGoogle Scholar
  58. Wang YJ, Tan ZM, Murat C, Jeandroz S, Le Tacon F (2007) Molecular taxonomy of Chinese truffles belonging to the Tuber rufum and Tuber puberulum groups. Fungal Divers 24:301–328Google Scholar
  59. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Gelfand MA, Sninski DH, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  60. Wik L, Karlsson M, Johannesson H (2008) The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa. BMC Evol Biol 8:109CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zambonelli A, Salomoni S, Pisi A (1993) Caratterizzazione anatomo-morfologica delle micorrize di Tuber spp. in Quercus pubescens Willd. Micol Ital 22:73–90Google Scholar
  62. Zambonelli A, Iotti M, Giomaro G, Hall I, Stocchi V, Wang Y, Danell E (2002) T. borchii cultivation: an interesting perspective. In: Hall IR, Wang Y, Zambonelli A, Danell E (eds) Edible mycorrhizal mushrooms and their cultivation. Proceedings of the 2th International Conference on Edible Mycorrhizal Mushrooms. Institute for Crop & Food Research, Christchurch, pp 0–7Google Scholar
  63. Zeppa S, Vallorani L, Potenza L, Bernardini F, Pieretti B, Guescini M, Giomaro G, Stocchi V (2000) Estimation of fungal biomass and transcript levels in Tilia platyphyllosTuber borchii ectomycorrhizae. FEMS Microbiol Lett 188:119–124CrossRefPubMedGoogle Scholar
  64. Zeppa S, Guidi C, Zambonelli A, Potenza L, Vallorani L, Pierleoni R, Sacconi C, Stocchi V (2002) Identification of putative genes involved in the development of Tuber borchii fruit body by mRNA differential display in agarose gel. Curr Gen 42:161–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Beatrice Belfiori
    • 1
  • Claudia Riccioni
    • 1
  • Francesco Paolocci
    • 1
  • Andrea Rubini
    • 1
  1. 1.National Research Council, Institute of Biosciences and Bioresources - Perugia DivisionPerugiaItaly

Personalised recommendations