Mycorrhiza

, Volume 26, Issue 1, pp 67–76 | Cite as

Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea

  • Leila Shabani
  • Mohammad R. Sabzalian
  • Sodabeh Mostafavi pour
Original Paper

Abstract

Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.

Keywords

ABC transporters Metallothionein Mycorrhiza Nickel Tall fescue Schedonorus arundinaceus 

References

  1. Ahmed A, Hasnain A, Akhtar S, Hussain A, Yasin G, Wahid A, Mahmood S (2013) Antioxidant enzymes as bio-markers for copper tolerance in safflower (Carthamus tinctorius L.). Afr J Biotechnol 9:5441–5444Google Scholar
  2. Aghababaei F, Raiesi F, Hosseinpur AR (2014) The significant contribution of mycorrhizal fungi and earthworms to maize protection and phytoremediation in Cd-polluted soils. Pedobiologia 57:223–233CrossRefGoogle Scholar
  3. Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint M-L, Epron D, Badot P-M (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218CrossRefGoogle Scholar
  4. Allen SE (1989) Chemical analysis of ecological materials. Blackwell, LondonGoogle Scholar
  5. Alsokari S (2009) Modulatory role of kinetin on photosynthetic characteristics, yield and yield attributes of cadmium-treated Sorghum bicolor plants. J Appl Sci Res 5:2383–2396Google Scholar
  6. Amir H, Lagrange A, Hassaϊne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595PubMedCrossRefGoogle Scholar
  7. Arnon DI (1949) Cooper enzymes in isolated chloroplasts. Phenol-oxidase in Beta vulgaris. Plant Physiol 24:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  8. Auge RM, Moore JL, Sylvia DM, Cho K (2004) Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature. Mycorrhiza 14:85–92PubMedCrossRefGoogle Scholar
  9. Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Micobiol Biotechnol 97:3119–3128CrossRefGoogle Scholar
  10. Cammack R, Fernandez VM, Schneider K (1988) Nickel in hydrogenases from sulphate reducing, photosynthetic, and hydrogen oxidizing bacteria. In: Lancaster JR jr (ed) The bioorganic chemistry of nickel. Verlag-Chemie, Weinheim, pp 167–190Google Scholar
  11. Carpio LA, Davies FT, Arnold MA (2005) Arbuscular mycorrhizal fungi, organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures. J Am Soc Hortic Sci 130:131–139Google Scholar
  12. Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cicatelli A, Torrigiani P, Todeschini V, Biondi S, Castiglione S, Lingua G (2014) Arbuscular mycorrhizal fungi as a tool to ameliorate the phytoremediation potential of poplar: biochemical and molecular aspects. iForest 7:333–341CrossRefGoogle Scholar
  14. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486PubMedCrossRefGoogle Scholar
  15. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedPubMedCentralCrossRefGoogle Scholar
  16. Davies F, Olalde-Portugal V, Aguilera-Gomez L, Alvarado M, Ferrera-Cerrato R, Boutton T (2002) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic 92:347–359CrossRefGoogle Scholar
  17. Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786CrossRefGoogle Scholar
  18. Demir S (2004) Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turk J Biol 28:85–90Google Scholar
  19. Dong Y, Zhu Y-G, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155:174–181PubMedCrossRefGoogle Scholar
  20. Doubkova P, Sudova R (2014) Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis. Mycorrhiza 24:209–217PubMedCrossRefGoogle Scholar
  21. Gajewska E, Skłodowska M (2007) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol 164:364–366PubMedCrossRefGoogle Scholar
  22. Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMedCrossRefGoogle Scholar
  23. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500CrossRefGoogle Scholar
  24. Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremedialion. Planta 223:1115–1122PubMedCrossRefGoogle Scholar
  25. Gonzalez-Chavez M (2000) Arbuscular mycorrhizal fungi from As/Cu polluted soils. Dissertation, University of Reading, UKGoogle Scholar
  26. Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544PubMedCrossRefGoogle Scholar
  27. Gussarsson M (1994) Cadmium-induced alterations in nutrient composition and growth of Betula pendula seedlings: the significance of fine roots as a primary target for cadmium toxicity. J Plant Nutr 17:2151–2163CrossRefGoogle Scholar
  28. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefGoogle Scholar
  29. Jana S, Choudhuri MA (1982) Senescence in submerged aquatic angiosperms: effects of heavy metals. New Phytol 90:477–484CrossRefGoogle Scholar
  30. Jianfeng H, Xiangui L, Rui Y, Jiang Q, Yufang S (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci 21:1214–1220CrossRefGoogle Scholar
  31. Kagan VE, Kisin ER, Kawai K et al (2002) Towards mechanism based antioxidant interventions. Ann NY Acad Sci 959:188–198PubMedCrossRefGoogle Scholar
  32. Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218PubMedCrossRefGoogle Scholar
  34. Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161PubMedCrossRefGoogle Scholar
  35. Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  36. Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28PubMedCrossRefGoogle Scholar
  37. Latef AAHA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21:495–503PubMedCrossRefGoogle Scholar
  38. Lee J, Donghwan S, Won-yong S, Inhwan H, Youngsook L (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815PubMedCrossRefGoogle Scholar
  39. Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382CrossRefGoogle Scholar
  41. Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355PubMedCrossRefGoogle Scholar
  42. Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes (correlation with copper tolerance). Plant Physiol 109:945–954PubMedPubMedCentralCrossRefGoogle Scholar
  43. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060PubMedCrossRefGoogle Scholar
  44. Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Poll 159:3730–3738CrossRefGoogle Scholar
  45. Perotto S, Martino E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnol 13:55–63Google Scholar
  46. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161CrossRefGoogle Scholar
  47. Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 39–72CrossRefGoogle Scholar
  48. Porcel R, Barea JM, Ruiz‐Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143CrossRefGoogle Scholar
  49. Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484PubMedCrossRefGoogle Scholar
  50. Rivera-Becerril F, van Tuinen D, Martin-Laurent F, Metwally A, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza 16:51–60PubMedCrossRefGoogle Scholar
  51. Rivera‐Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi‐Pearson V (2002) Cadmium accumulation and buffering of cadmium‐induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185PubMedCrossRefGoogle Scholar
  52. Roitsch T, Ehneß R (2000) Regulation of source/sink relations by cytokinins. Plant Growth Regul 32:359–367CrossRefGoogle Scholar
  53. SAS Institute Inc., (1999) SAS/STAT User's Guide. SAS Institute, Inc, Cary, NCGoogle Scholar
  54. Singh K, Pandey S (2011) Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J Environ Biol 32:391–394PubMedGoogle Scholar
  55. Singh R, Tripathi R, Dwivedi S, Kumar A, Trivedi P, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032PubMedCrossRefGoogle Scholar
  56. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  57. Soleimani M, Hajabbasi M, Afyuni M, Charkhabi A, Shariatmadari H (2009) Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Caspian J Environ Sci 7:59–70Google Scholar
  58. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya codii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190PubMedCrossRefGoogle Scholar
  59. Van den Ende W, Peshev D (2013) Sugars as antioxidants in plants. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, pp 285–307Google Scholar
  60. Vivas A, Biró B, Németh T, Barea JM, Azcón R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704CrossRefGoogle Scholar
  61. Williams LE, Pittman JK, Hall J (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126PubMedCrossRefGoogle Scholar
  62. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRefGoogle Scholar
  63. Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. B Environ Contam Toxicol 86:1–17CrossRefGoogle Scholar
  64. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Leila Shabani
    • 1
  • Mohammad R. Sabzalian
    • 2
  • Sodabeh Mostafavi pour
    • 1
  1. 1.Department of Biology, Faculty of SciencesShahrekord UniversityShahrekordIran
  2. 2.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of TechnologyIsfahanIran

Personalised recommendations