Advertisement

Mycorrhiza

, Volume 25, Issue 6, pp 447–456 | Cite as

Mycorrhizal fungal communities in coastal sand dunes and heaths investigated by pyrosequencing analyses

  • Synnøve Botnen
  • Håvard Kauserud
  • Tor Carlsen
  • Rakel Blaalid
  • Klaus Høiland
Original Paper

Abstract

Maritime sand dunes and coastal ericaceous heaths are unstable and dynamic habitats for mycorrhizal fungi. Creeping willow (Salix repens) is an important host plant in these habitats in parts of Europe. In this study, we wanted to assess which mycorrhizal fungi are associated with S. repens in four different coastal vegetation types in Southern Norway, three types from sand dunes and one from heaths. Moreover, we investigated which ecological factors are important for the fungal community structure in these vegetation types. Mycorrhizal fungi on S. repens root samples were identified by 454 pyrosequencing of tag-encoded internal transcribed spacer 1 (ITS1) amplicons. Significantly higher fungal richness was observed in hummock dunes and dune slacks compared to eroded dune vegetation. The compositional variation was mainly accounted for by location (plot) and vegetation type and was significantly correlated to content of carbon, nitrogen and phosphorus in soil. The investigated maritime sand dunes and coastal ericaceous heaths hosted mycorrhizal taxa mainly associated with Helotiales, Sebacinales, Thelephorales and Agaricales.

Keywords

Mycorrhiza Salix repens Ericaceous heaths Sand dunes 

Notes

Acknowledgments

Thanks are due to Berit Kaasa (Department of Bioscience, UiO) for analyses of total C, N and P in the soil samples. The Department of Biosciences, UiO, is acknowledged for financial support. The county governor of Vest-Agder is thanked for granting permission to collect samples in the nature-protected areas on the Lista peninsula.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

572_2014_624_MOESM1_ESM.pdf (99 kb)
Online Resource 1 (PDF 99 kb)
572_2014_624_MOESM2_ESM.pdf (870 kb)
Online Resource 2 (PDF 870 kb)
572_2014_624_MOESM3_ESM.pdf (92 kb)
Online Resource 3 (PDF 92 kb)
572_2014_624_MOESM4_ESM.pdf (169 kb)
Online Resource 4 (PDF 168 kb)

References

  1. Andersson O (1950) Larger fungi of sandy grass heaths and sand dunes in Scandinavia. Bot Notiser 2:1–89Google Scholar
  2. Arnolds E, Kuyper TW (1995) Some rare and interesting Cortinarius species associated with Salix repens. Beih Sydowia 10:5–27Google Scholar
  3. Baldrian P, Kolařík M, Štursová M, Kopecký J, Valášková V, Větrovský T, Žifčáková L, Šnajdr J, Rídl J, Vlček Č, Voříšková J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bending GD, Read DJ (1996) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1595–1602CrossRefGoogle Scholar
  5. Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk P, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224PubMedCrossRefGoogle Scholar
  6. Bulman SR, Visnovsky SB, Hall IR, Guerin-Laguette A, Wang Y (2010) Molecular and morphological identification of truffle-producing Tuber species in New Zealand. Mycol Prog 9:205–214CrossRefGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedCentralPubMedCrossRefGoogle Scholar
  8. Carlsen T, Aas AB, Lindner D, Vrålstad T, Schumacher T, Kauserud H (2012) Don’t make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecol 5:747–749CrossRefGoogle Scholar
  9. Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97:950–963CrossRefGoogle Scholar
  10. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedCrossRefGoogle Scholar
  11. Fujimura KE, Smith JE, Horton TR, Weber NS, Spatafora JW (2005) Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA. Mycorrhiza 15:79–86PubMedCrossRefGoogle Scholar
  12. Fujiyoshi M, Yoshitake S, Watanabe K, Murota K, Tsuchiya Y, Uchida M, Nakatsubo T (2011) Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic, Svalbard. Polar Biol 34:667–673CrossRefGoogle Scholar
  13. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  14. Geml J, Gravendeel B, van der Gaag KJ, Neilen M, Lammers Y, Raes N, Semenova TA, de Knijff P, Noordeloos ME (2014) The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS ONE 9(6):e99852. doi: 10.1371/journal.pone.0099852 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gimingham CH (1972) Ecology of heathlands. Chapman and Hall, LondonGoogle Scholar
  16. Grelet G-A, Johnson D, Vrålstad T, Alexander IJ, Anderson IC (2010) New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188:210–222PubMedCrossRefGoogle Scholar
  17. Hall IR, Zambonelli A, Primavera F (1997) Ectomycorrhizal fungi with edible fruiting bodies. 3. Tuber magnatum, Tuberaceae. Econ Bot 52:192–200CrossRefGoogle Scholar
  18. Høiland K (1975) De obligate storsoppene på sanddyner i Norge, med særlig vekt på forekomstene på Lista, Vest-Agder. Blyttia 33:127–140Google Scholar
  19. Høiland K (1978) Sand-dune vegetation of Lista, SW Norway. Nor J Bot 25:23–45Google Scholar
  20. Høiland K (1981) En undersøkelse av storsoppfloraen i utvalgte heiområder på Lista, Vest-Agder. Blyttia 39:15–26Google Scholar
  21. Høiland K (2006) Sand dune fungi on Lista (Vest-Agder, SW Norway) revisited after 33 years. Agarica 26:39–54Google Scholar
  22. Høiland K, Elven R (1980) Classification of fungal synedria on coastal sand dunes at Lista, South Norway, by divisive information analysis. Nor J Bot 27:23–29Google Scholar
  23. Hrynkiewicz K, Toljander YK, Baum C, Fransson PMA, Taylor AFS, Weih M (2012) Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands. Mycorrhiza 22:603–613PubMedCrossRefGoogle Scholar
  24. Ishida TI, Nara K, Ma S, Takano T, Liu S (2009) Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza 19:329–335PubMedCrossRefGoogle Scholar
  25. Jordal JB (2006) Nasjonal registrering av kulturlandskap. Kartlegging av biologisk mangfold i Midt-Norge, med en vurdering av kunnskapsstatus for Møre og Romsdal. Rapp J B Jordal Nr 2–2006:1–94Google Scholar
  26. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123PubMedCrossRefGoogle Scholar
  27. Lekberg Y, Gibbons SM, Rosendahl S (2014) Will different OTU delineation methods change interpretation of arbuscular mycorrhizal fungal community patterns? New Phytol 202:1101–1104PubMedCrossRefGoogle Scholar
  28. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299PubMedCentralPubMedCrossRefGoogle Scholar
  29. Liu H, Økland T, Halvorsen R, Gao J, Liu Q, Eilertsen O, Bratli H (2008) Gradients analyses of forests ground vegetation and its relationships to environmental variables in five subtropical forest areas, S and SW China. Sommerfeltia 32:3–196CrossRefGoogle Scholar
  30. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  31. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCentralPubMedCrossRefGoogle Scholar
  32. Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916CrossRefGoogle Scholar
  33. Okland RH, Okland T, Rydgren K (2001) Vegetation-environment relationships of boreal spruce swamp forests in Østmarka Nature Reserve, SE Norway. Sommerfeltia 29:1–190Google Scholar
  34. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: community ecology package. R package version 2.0-5. http://CRAN.R-project.org/package=vegan. Accessed 1 May 2014
  35. Parádi I, Baar J (2006) Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. For Ecol Manag 237:366–372CrossRefGoogle Scholar
  36. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/
  37. Ranwell DS (1972) Ecology of salt marshes and sand dunes. Chapman and Hall, LondonGoogle Scholar
  38. Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb Sect B Biol Sci 96:89–110Google Scholar
  39. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCentralPubMedCrossRefGoogle Scholar
  40. Schumacher T (1979) Notes on taxonomy, ecology, and distribution of operculate discomycetes (Pezizales) from river banks in Norway. Nor J Bot 26:53–83Google Scholar
  41. Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863PubMedCrossRefGoogle Scholar
  42. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  43. Taylor DL, McCormick MK (2007) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033PubMedCrossRefGoogle Scholar
  44. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263PubMedCrossRefGoogle Scholar
  45. Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178PubMedCrossRefGoogle Scholar
  46. Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897CrossRefGoogle Scholar
  47. van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193CrossRefGoogle Scholar
  48. van der Heijden EW, Kuyper T (2001a) Laboratory experiments imply the conditionality of mycorrhizal benefits for Salix repens: role of pH and nitrogen to phosphorus rations. Plant Soil 228:275–290CrossRefGoogle Scholar
  49. van der Heijden EW, Kuyper T (2001b) Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? Plant Soil 230:161–174CrossRefGoogle Scholar
  50. van der Heijden EW, Kuyper T (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680CrossRefGoogle Scholar
  51. van der Heijden EW, de Vries FW, Kuyper TW (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. I. Above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can J Bot 77:1821–1832CrossRefGoogle Scholar
  52. van der Heijden EW, Vosatka M (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. II. Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi. Can J Bot 77:1833–1841CrossRefGoogle Scholar
  53. Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164:183–192CrossRefGoogle Scholar
  54. Vrålstad T (2004) Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol 164:7–10CrossRefGoogle Scholar
  55. Walker JKM, Ward V, Paterson C, Jones MD (2012) Coarse woody debris retention in subalpine clearcuts affects ectomycorrhizal root tip community structure within fifteen years of harvest. Appl Soil Ecol 60:5–15CrossRefGoogle Scholar
  56. Watling R (2005) Fungal associates of Salix repens in northern oceanic Britain and their conservation significance. Mycol Res 109:1418–1424PubMedCrossRefGoogle Scholar
  57. Watling R, Rotheroe M (1989) Macrofungi of sand dunes. Proc R Soc Edinb Sect B Biol Sci 96:111–126Google Scholar
  58. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Michael AI, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Synnøve Botnen
    • 1
  • Håvard Kauserud
    • 1
  • Tor Carlsen
    • 1
  • Rakel Blaalid
    • 1
  • Klaus Høiland
    • 1
  1. 1.Section for Genetics and Evolutionary Biology, Department of BiosciencesUniversity of OsloOsloNorway

Personalised recommendations