, Volume 25, Issue 3, pp 215–227 | Cite as

Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency

  • Louisa Robinson Boyer
  • Philip Brain
  • Xiang-Ming Xu
  • Peter Jeffries
Original Paper


The effect of inoculation with two arbuscular mycorrhizal fungi (AMF) on growth and drought tolerance of cultivated strawberry (Fragaria × ananassa) was studied. Three treatments (a single treatment either of Funneliformis mosseae BEG25, Funneliformis geosporus BEG11 or a 50:50 mixed inoculation treatment of both species) were compared to uninoculated plants. Species-specific primers for qPCR quantification of F. geosporus and F. mosseae DNA were developed to quantify the relative abundance of each fungus in roots of strawberry under different conditions of water stress. Co-occupation of the same root by both species was shown to commonly occur, but their relative abundance varied with water stress (reduced irrigation of up to 40 %). Greater root colonisation was observed microscopically under water stress, but this increased colonisation was often accompanied with decreased amounts of fungal DNA in the root. F. mosseae tended to become more abundant under water stress relative to F. geosporus. There was significant correlation in the fungal colonisation measurements from the microscopic and qPCR methods under some conditions, but the nature of this relationship varied greatly with AMF inoculum and abiotic conditions. Single-species inoculation treatments gave similar benefits to the host to the mixed inoculation treatment regardless of irrigation regime; here, amount of colonisation was of greater importance than functional diversity. The addition of AMF inocula to plants subjected to reduced irrigation restored plant growth to the same or higher values as the non-mycorrhizal, fully-watered plants. The water use efficiency of plants was greater under the regulated deficit irrigation (RDI) regime and in AMF-inoculated plants, but there were no significant differences between plants inoculated with the single or combined inoculum. This study demonstrated that the increase in plant growth was directly influenced by an increase in root colonisation by AMF when individual plants were examined.


Arbuscular mycorrhiza Co-occurring fungal species Competition Strawberry Water stress Water use efficiency 

Supplementary material

572_2014_603_MOESM1_ESM.doc (364 kb)
ESM 1(DOC 364 kb)


  1. Aliasgharzad N, Neyshabouri MR, Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. In: Biohydrology 2006 International Conference, Prague, Czech Republic, 20–22 Sep 2006Google Scholar
  2. Alkan N, Gadkar V, Coburn J, Yarden O, Kapulnik Y (2004) Quantification of the arbuscular mycorrhizal fungus Glomus intraradices in host tissue using real-time polymerase chain reaction. New Phytol 161:877–885. doi:10.1111/j.1469-8137.2003.00975.x CrossRefGoogle Scholar
  3. Alkan N, Gadkar V, Yarden O, Kapulnik Y (2006) Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl Environ Microbiol 72:4192–4199. doi:10.1128/aem.02889-05 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Al-Karaki GN (1998) Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8:41–45CrossRefGoogle Scholar
  5. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  6. Auge RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381CrossRefGoogle Scholar
  7. Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359CrossRefPubMedGoogle Scholar
  8. Bolandnazar S, Aliasgarzad N, Neishabury MR, Chaparzadeh N (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci Hortic 114:11–15. doi:10.1016/j.scienta.2007.05.012 CrossRefGoogle Scholar
  9. Borkowska B (2002) Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol Plant 24:365–370CrossRefGoogle Scholar
  10. Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068Google Scholar
  11. Borowicz VA (2010) The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia 53:265–270CrossRefGoogle Scholar
  12. Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cardenas-Navarro R (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782PubMedGoogle Scholar
  13. Chavez MG, Ferrera-Cerrato R (1990) Effect of vesicular-arbuscular mycorrhizae on tissue culture-derived plantlets of strawberry. HortSci 25:903–905Google Scholar
  14. Cochran WG (1950) Estimation of bacterial densities by means of the “most probable number”. Biometrics 6:105–116CrossRefPubMedGoogle Scholar
  15. Edathil TT, Manian S, Udaiyan K (1996) Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill). Agric Ecosyst Environ 59:63–68CrossRefGoogle Scholar
  16. Fan L, Dalpé Y, Fang C, Dube C, Khanizadeh S (2011) Influence of arbuscular mycorrhizae on biomass and root morphology of selected strawberry cultivars under salt stress. Botanique 89:397–403CrossRefGoogle Scholar
  17. Feldmann F, Gillessen M, Hutter I, Schneider C (2009) Should we breed for effective mycorrhiza symbiosis? In: Feldmann F, Alford DV, Furk C (eds) Crop plant resistance to biotic and abiotic factors. Deutsche Phytomed Ges, Braunschweig, p 507–522Google Scholar
  18. Fitter A (2012) Why plant science matters. New Phytol 193:1–2. doi:10.1111/j.1469-8137.2011.03995.x CrossRefPubMedGoogle Scholar
  19. Gamper HA, Young JPW, Jones DL, Hodge A (2008) Real-time PCR and microscopy: are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance? Fungal Gen Biol 45:581–596. doi:10.1016/j.fgb.2007.09.007 CrossRefGoogle Scholar
  20. Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 87:615–621CrossRefGoogle Scholar
  21. Garland BC, Schroeder-Moreno MS (2011) Influence of summer cover crops and mycorrhizal fungi on strawberry production in the southeastern United States. HortSci 46:985–991Google Scholar
  22. Grant OM, Davies MJ, Longbottom H, Atkinson CJ (2009) Irrigation scheduling and irrigation systems: optimising irrigation efficiency for container ornamental shrubs. Irrig Sci 27:139–153CrossRefGoogle Scholar
  23. Grant OM, Johnson AW, Davies MJ, James CM, Simpson DW (2010) Physiological and morphological diversity of cultivated strawberry (Fragaria × ananassa) in response to water deficit. Environ Exp Bot 68:264–272CrossRefGoogle Scholar
  24. Hart M, Forsythe J, Oshowski B, Bücking H, Jansa J, Kiers ET (2013) Hiding in a crowd—does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis 59:47–56. doi:10.1007/s13199-012-0197-8 CrossRefGoogle Scholar
  25. Hršelová H, Vejsadová H, Přrikryl Z, Váchová J, Vančura V, Vít A (1989) Effect of inoculation with vesicular-arbuscular mycorrhizal fungi on growth of Strawberries. In: Vlastimil V, Františk K (eds) Developments in soil science, vol. 18. Elsevier, Amsterdam, pp 109–114Google Scholar
  26. Isayenkov S, Fester T, Hause B (2004) Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. J Plant Physiol 161:1379–1383. doi:10.1016/j.jplph.2004.04.012 CrossRefPubMedGoogle Scholar
  27. Ismail Y, Hijri M (2012) Arbuscular mycorrhisation with Glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucinum. Funct Plant Biol 39:236–245CrossRefGoogle Scholar
  28. Janoušková M, Seddas P, Mrnka L, Tuinen D, Dvořáčková A, Tollot M, Gianinazzi-Pearson V, Vosátka M, Gollotte A (2009) Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 19:393–402. doi:10.1007/s00572-009-0243-4 CrossRefPubMedGoogle Scholar
  29. Janoušková M, Krak K, Wagg C, Štorchová H, Caklová P, Vosátka M (2013) Effects of inoculum additions in the presence of a preestablished arbuscular mycorrhizal fungal community. Appl Environ Microbiol 79:6507–6515CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789. doi:10.1111/j.1469-8137.2007.02294.x CrossRefPubMedGoogle Scholar
  31. Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24:109–119CrossRefPubMedGoogle Scholar
  32. Jeffries P, Barea JM (2012) Arbuscular mycorrhiza: a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota IX Fungal Associations, The Mycota, vol 9. Springer Berlin, Heidelberg, pp 51–75. doi:10.1007/978-3-642-30826-0_4 CrossRefGoogle Scholar
  33. Jin H, Germida J, Walley F (2013) Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungal colonisation in pot-cultured field pea (Pisum sativum L.). Mycorrhiza 23:45–59CrossRefPubMedGoogle Scholar
  34. Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil 253:287–292. doi:10.1023/a:1024843419670 CrossRefGoogle Scholar
  35. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. doi:10.1126/science.1208473 CrossRefPubMedGoogle Scholar
  36. Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110. doi:10.1111/j.1461-0248.2005.00853.x CrossRefPubMedGoogle Scholar
  37. Koide RT (2000) Functional complementarity in the arbuscular mycorrhizal symbiosis. New Phytol 147:233–235CrossRefGoogle Scholar
  38. Krak K, Janouskova M, Caklova P, Vosatka M, Storchova H (2012) Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA. Appl Environ Microbiol 78:3630–3637. doi:10.1128/aem.00035-12 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. doi:10.1111/j.1469-8137.2011.03962.x CrossRefPubMedGoogle Scholar
  40. Lekberg Y, Koide R (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analyisis of studies published between 1988 and 2003. New Phytol 168:189–204CrossRefPubMedGoogle Scholar
  41. Lisek A, Sas Paszt L, Sumorok B (2012) Detection of arbuscular mycorrhizal fungi in the roots of strawberry plants fertilised with organic bioproducts. Veg Crop Res Bull 77:17–27Google Scholar
  42. Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 5:e36695CrossRefGoogle Scholar
  43. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501. doi:10.1111/j.1469-8137.1990.tb00476.x CrossRefGoogle Scholar
  44. Niemi M, Vestberg M (1992) Inoculation of commercially grown strawberry with VA mycorrhizal fungi. Plant Soil 144:133–142. doi:10.1007/bf00018854 CrossRefGoogle Scholar
  45. Omirou M, Ioannides IM, Ehaliotis C (2013) Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Appl Soil Ecol 63:112–119CrossRefGoogle Scholar
  46. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  47. Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210. doi:10.1111/j.1469-8137.2007.02151.x CrossRefPubMedGoogle Scholar
  48. Querejeta JI, Allen MF, Caravaca F, Roldán A (2006) Differential modulation of host plant δ13C and δ18O by native and nonnative arbuscular mycorrhizal fungi in a semiarid environment. New Phytol 169:379–387. doi:10.1111/j.1469-8137.2005.01599.x CrossRefPubMedGoogle Scholar
  49. Reddy SR, Pindi PK, Reddy SM (2005) Molecular methods for research on arbuscular mycorrhizal fungi in India: problems and prospects. Curr Sci 89:1699–1709Google Scholar
  50. Redecker D, Schüßler A, Stockinger H, Stürmer S, Morton J, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531. doi:10.1007/s00572-013-0486-y CrossRefPubMedGoogle Scholar
  51. Ren L, Lou Y, Zhang N, Zhu X, Hao W, Sun S, Shen Q, Xu G (2013) Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants. Biol Fertil Soils 49:3–11CrossRefGoogle Scholar
  52. Roger A, Colard A, Angelard C, Sanders IR (2013) Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J 7:2137–2146. doi:10.1038/ismej.2013.112 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspecitives for molecular studies. Mycorrhiza 13:309–317CrossRefPubMedGoogle Scholar
  54. Sanders IR (2003) Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends Plant Sci 8:143–145. doi:10.1016/s1360-1385(03)00012-8 CrossRefPubMedGoogle Scholar
  55. Santos-González J, Nallanchakravarthula S, Alström S, Finlay R (2011) Soil, but not cultivar, shapes the structure of arbuscular mycorrhizal fungal assemblages associated with strawberry. Microb Ecol 62:25–35CrossRefPubMedGoogle Scholar
  56. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Academic, LondonGoogle Scholar
  57. Smith S, Facelli E, Pope S, Andrew Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20. doi:10.1007/s11104-009-9981-5 CrossRefGoogle Scholar
  58. Stewart LI, Hamel C, Hogue R, Moutoglis P (2005) Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Mycorrhiza 15:612–619. doi:10.1007/s00572-005-0003-z CrossRefPubMedGoogle Scholar
  59. Szczygiel A, Pierzga K, Borkowska B (2002) Performance of micropropagated strawberry plantlets after planting in the field. Acta Horticult 567:317–320Google Scholar
  60. Takeda F (1999) Out-of-season greenhouse strawberry production in soilless substrate. Adv Strawberry Res 18:4–15Google Scholar
  61. Thonar C, Erb A, Jansa J (2012) Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232. doi:10.1111/j.1755-0998.2011.03086.x CrossRefPubMedGoogle Scholar
  62. Treseder K (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13. doi:10.1007/s11104-013-1681-5 CrossRefGoogle Scholar
  63. Van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887CrossRefPubMedGoogle Scholar
  64. Veresoglou S, Menexes G, Rillig M (2012) Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza 22:227–235. doi:10.1007/s00572-011-0398-7 CrossRefPubMedGoogle Scholar
  65. Vestberg M (1992) Arbuscular mycorrhizal inoculation of micropropagated strawberry and field observations in Finland. Agronomie 12:865–867CrossRefGoogle Scholar
  66. Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L, Devos N, Weekers F, Kevers C, Thonart P, Lemoine MC, Cordier C, Alabouvette C, Gianinazzi S (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258CrossRefGoogle Scholar
  67. Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011a) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009. doi:10.1111/j.1461-0248.2011.01666.x CrossRefPubMedGoogle Scholar
  68. Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011b) Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92:1303–1313. doi:10.1890/10-1915.1 CrossRefPubMedGoogle Scholar
  69. Wu Q-S, Zou Y-N, Huang Y-M (2013) The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol 6:37–43CrossRefGoogle Scholar
  70. Yin B, Wang Y, Liu P, Hu J, Zhen W (2010) Effects of vesicular-arbuscular mycorrhiza on the protective system in strawberry leaves under drought stress. Front Agric China 4:165–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Louisa Robinson Boyer
    • 1
    • 2
  • Philip Brain
    • 2
  • Xiang-Ming Xu
    • 2
  • Peter Jeffries
    • 1
  1. 1.Kent Fungal Group, School of BiosciencesUniversity of KentCanterburyUK
  2. 2.Genetics and Crop Improvement ProgrammeEast Malling ResearchEast MallingUK

Personalised recommendations