, Volume 24, Issue 7, pp 565–570 | Cite as

Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera

  • Marco CosmeEmail author
  • Philipp Franken
  • Inga Mewis
  • Susanne Baldermann
  • Susanne Wurst
Short Note


Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.


Arbuscular mycorrhizal fungi Moringa oleifera Crop quality Health-promoting compounds Microelements 



This study was supported by a doctoral grant (MC) from Fundação para a Ciência e a Tecnologia (Portugal) and was partially funded by the Dahlem Center of Plant Sciences – Freie Univerität Berlin (Germany) and by the Ministries of Consumer Protection, Food and Agriculture of the Federal Republic of Germany, of the Land Brandenburg and of the Land Thüringen. We thank Dr Kirsten Weiß and Sibylle Nöther for the ICP-OES analyses conducted at the Common Laboratory of Analysis of the Faculty of Agriculture and Horticulture, Humboldt Universität Berlin (Germany). The development and distribution of Moringa oleifera cv. TNAU-1 is credited to AVRDC - The World Vegetable Center (Taiwan).

Supplementary material

572_2014_574_MOESM1_ESM.pptx (79 kb)
Fig. S1 (PPTX 79.1 kb)
572_2014_574_MOESM2_ESM.pptx (105 kb)
Fig. S2 (PPTX 104 kb)
572_2014_574_MOESM3_ESM.docx (35 kb)
Table S1 (DOCX 35.2 kb)
572_2014_574_MOESM4_ESM.docx (29 kb)
Table S2 (DOCX 29.2 kb)


  1. Anwar F, Latif S, Ashraf M, Gilani AH (2007) Moringa oleifera: a food plant with multiple medicinal uses. Phytother Res 21:17–25PubMedCrossRefGoogle Scholar
  2. Asaolu VO, Odeyinka SM, Akinbamijo OO (2012) The effects of four strains of mycorrhizal fungi and goat manure on fodder production by Moringa oleifera under rain-fed conditions in the Gambia. Agric Biol J N Am 3:365–373CrossRefGoogle Scholar
  3. Asensio D, Rapparini F, Penuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161PubMedCrossRefGoogle Scholar
  4. Baldermann S, Yang Z, Sakai M, Fleischmann P, Morita A, Todoroki Y, Watanabe N (2013) Influence of exogenously applied abscisic acid on carotenoid content and water uptake in flowers of the tea plant (Camellia sinensis). J Sci Food Agric 93:1660–1664PubMedCrossRefGoogle Scholar
  5. Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359PubMedCrossRefGoogle Scholar
  6. Baslam M, Garmendia I, Goicoechea N (2011a) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515PubMedCrossRefGoogle Scholar
  7. Baslam M, Pascual I, Sánchez-Díaz M, Erro J, García-Mina JM, Goicoechea N (2011b) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59:11129–11140PubMedCrossRefGoogle Scholar
  8. Baslam M, Esteban R, García-Plazaola J, Goicoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128PubMedCrossRefGoogle Scholar
  9. Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish Tree) and Moringa stenopetala L. J Agric Food Chem 51:3546–3553PubMedCrossRefGoogle Scholar
  10. Cardarelli M, Rouphael Y, Rea E, Lucini L, Pellizzoni M, Colla G (2013) Effects of fertilization, arbuscular mycorrhiza, and salinity on growth, yield, and bioactive compounds of two Aloe species. Hortscience 48:568–575Google Scholar
  11. Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323CrossRefGoogle Scholar
  12. Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609CrossRefGoogle Scholar
  13. Ferreira PMP, Farias DF, Oliveira JTD, Carvalho ADU (2008) Moringa oleifera: bioactive compounds and nutritional potential. Rev Nutr 21:431–437CrossRefGoogle Scholar
  14. Förster N, Ulrichs C, Schreiner M, Müller CT, Mewis I (2014) Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem (in press)Google Scholar
  15. Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107:242–251PubMedCrossRefGoogle Scholar
  16. Hart MM, Forsythe JA (2012) Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hortic 148:206–214CrossRefGoogle Scholar
  17. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647PubMedCrossRefGoogle Scholar
  18. Knopf E, Blaschke H, Munch JC (2013) Improving Moringa growth by using autochthonous and allochthonous arbuscular mycorrhizal fungi in Lake Victoria basin. West Afr J App Ecol 21:47–58Google Scholar
  19. Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hortic 106:554–567CrossRefGoogle Scholar
  20. Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chem 115:650–656CrossRefGoogle Scholar
  21. Ludwig-Müller J, Bennett RN, García-Garrido JM, Piché Y, Vierheilig H (2002) Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels. J Plant Physiol 159:517–523CrossRefGoogle Scholar
  22. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748PubMedCrossRefGoogle Scholar
  23. Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170PubMedCrossRefGoogle Scholar
  24. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  25. Mena-Violante HG, Ocampo-Jiménez O, Dendooven L, Martínez-Soto G, González-Castañeda J, Davies FT, Olalde-Portugal V (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16:261–267PubMedCrossRefGoogle Scholar
  26. Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novak J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096CrossRefGoogle Scholar
  27. Pandey A, Pradheep K, Gupta R, Nayar ER, Bhandari D (2011) ‘Drumstick tree’ (Moringa oleifera Lam.): a multipurpose potential species in India. Genet Resour Crop Evol 58:453–460CrossRefGoogle Scholar
  28. Radovich TJK, Habte M (2009) Arbuscular mycorrhizal dependency of three Moringa genotypes. Hortscience 44:1025–1026Google Scholar
  29. Schwarz D, Welter S, George E, Franken P, Lehmann K, Weckwerth W, Dölle S, Worm M (2011) Impact of arbuscular mycorrhizal fungi on the allergenic potential of tomato. Mycorrhiza 21:341–349PubMedCrossRefGoogle Scholar
  30. Siddiky MRK, Kohler J, Cosme M, Rillig MC (2012) Soil biota effects on soil structure: interactions between arbuscular mycorrhizal fungal mycelium and collembola. Soil Biol Biochem 50:33–39CrossRefGoogle Scholar
  31. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  32. Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366CrossRefGoogle Scholar
  33. Tong Y, Gabriel-Neumann E, Ngwene B, Krumbein A, Baldermann S, Schreiner M, George E (2013) Effects of single and mixed inoculation with two arbuscular mycorrhizal fungi in two different levels of phosphorus supply on β-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers. Plant Soil 372:361–374CrossRefGoogle Scholar
  34. Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282CrossRefGoogle Scholar
  35. Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedCentralPubMedGoogle Scholar
  36. Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig-Müller J (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352CrossRefGoogle Scholar
  37. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefGoogle Scholar
  38. Yamato M, Ikeda S, Iwase K (2009) Community of arbuscular mycorrhizal fungi in drought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience 50:100–105CrossRefGoogle Scholar
  39. Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marco Cosme
    • 1
    • 2
    Email author
  • Philipp Franken
    • 2
  • Inga Mewis
    • 2
  • Susanne Baldermann
    • 2
    • 3
  • Susanne Wurst
    • 1
  1. 1.Functional Biodiversity, Dahlem Center of Plant SciencesFreie Universität BerlinBerlinGermany
  2. 2.Leibniz-Institute of Vegetable and Ornamental CropsGrossbeerenGermany
  3. 3.Institute of Nutritional ScienceUniversity of PotsdamNuthetalGermany

Personalised recommendations