Advertisement

Mycorrhiza

, Volume 23, Issue 3, pp 167–183 | Cite as

The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review

  • Alex Seguel
  • Jonathan R. Cumming
  • Katrina Klugh-Stewart
  • Pablo Cornejo
  • Fernando BorieEmail author
Review

Abstract

Soil acidity is an impediment to agricultural production on a significant portion of arable land worldwide. Low productivity of these soils is mainly due to nutrient limitation and the presence of high levels of aluminium (Al), which causes deleterious effects on plant physiology and growth. In response to acidic soil stress, plants have evolved various mechanisms to tolerate high concentrations of Al in the soil solution. These strategies for Al detoxification include mechanisms that reduce the activity of Al3+ and its toxicity, either externally through exudation of Al-chelating compounds such as organic acids into the rhizosphere or internally through the accumulation of Al–organic acid complexes sequestered within plant cells. Additionally, root colonization by symbiotic arbuscular mycorrhizal (AM) fungi increases plant resistance to acidity and phytotoxic levels of Al in the soil environment. In this review, the role of the AM symbiosis in increasing the Al resistance of plants in natural and agricultural ecosystems under phytotoxic conditions of Al is discussed. Mechanisms of Al resistance induced by AM fungi in host plants and variation in resistance among AM fungi that contribute to detoxifying Al in the rhizosphere environment are considered with respect to altering Al bioavailability.

Keywords

AM fungal diversity Exudation Glomalin-related soil protein GRSP Organic acids Aluminium tolerance mechanisms 

Notes

Acknowledgments

We greatly fully acknowledge the financial support of FONDECYT 1100642 grant (F. Borie), from Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile. Alex Seguel also acknowledges the financial support of CONICYT through Doctoral Fellowship Program, Project 24100181 and Internship grant BECAS CHILE to visit Dr. Cumming’s laboratory at West Virginia University, USA.

Supplementary material

572_2013_479_MOESM1_ESM.pdf (66 kb)
ESM 1 (PDF 65 kb)

References

  1. Abdel Latef AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi of growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hort 127:228–233CrossRefGoogle Scholar
  2. Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43:2427–2431CrossRefGoogle Scholar
  3. Ahn SJ, Matsumoto H (2006) The role of the plasma membrane in the response of plants roots to aluminum toxicity. Plant Signal Behav 1:37–45PubMedCrossRefGoogle Scholar
  4. Ahonen-Jonnarth U, Goransson A, Finlay RD (2003) Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Tree Physiol 23:157–167PubMedCrossRefGoogle Scholar
  5. Andrade SAL, Mazzafera P, Schiavinato MA, Silveira APD (2009) Arbuscular mycorrhizal association in coffee. J Agric Sci 147:105–115CrossRefGoogle Scholar
  6. Arriagada CA, Herrera MA, Borie F, Ocampo JA (2007) Contribution of arbuscular mycorrhizal and saprobe fungi to the aluminum resistance of Eucalyptus globulus. Water Air Soil Pollut 182:383–394CrossRefGoogle Scholar
  7. Ashen J, Goff L (2000) Molecular and ecological evidence for species specificity and coevolution in a group of marine algal–bacterial symbiosis. Appl Environ Microbiol 66:3024–3030PubMedCrossRefGoogle Scholar
  8. Avio L, Cristani C, Giovannetti SP (2009) Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae. Can J Microbiol 55:242–253PubMedCrossRefGoogle Scholar
  9. Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92CrossRefGoogle Scholar
  10. Bartolome-Esteban H, Schenck NC (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86:217–226CrossRefGoogle Scholar
  11. Bedini S, Avio L, Argese E, Giovannetti M (2007) Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agr Ecosyst Environ 120:463–466CrossRefGoogle Scholar
  12. Bedini S, Pellegrino E, Avio L et al (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496CrossRefGoogle Scholar
  13. Berliner R, Torrey JG (1989) On tripartite Frankia–mycorrhizal associations in the Myricaceae. Can J Bot 67:1708–1712CrossRefGoogle Scholar
  14. Bever JD, Morton J (1999) Heritable variation and mechanisms of inheritance of spore shape within a population of Scutellospora pellucida, an arbuscular mycorrhizal fungus. Am J Bot 86:1209–1216PubMedCrossRefGoogle Scholar
  15. Bever JD, Schultz P, Pringle A, Morton J (2001) Arbuscular mycorrhizal fungi: more diverse than meets the age, and the ecological tale of why. Bioscience 51:923–931CrossRefGoogle Scholar
  16. Blancaflor EB, Jones DL, Gilroy S (1998) Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol 118:159–172PubMedCrossRefGoogle Scholar
  17. Bolan NS, Adriano D, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 78:215–272CrossRefGoogle Scholar
  18. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498PubMedCrossRefGoogle Scholar
  19. Borie F, Rubio R (1999) Effects of arbuscular mycorrhizae and liming on growth and mineral acquisition of Al-tolerant barley cultivars. J Plant Nutr 22:121–137CrossRefGoogle Scholar
  20. Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effect of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 88:253–261CrossRefGoogle Scholar
  21. Bose J, Babourina O, Shabala S, Rengel Z (2010) Aluminium induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. J Exp Bot 61:3163–3175PubMedCrossRefGoogle Scholar
  22. Campos-Soriano L, Garcí-Garrido JM, San Segundo B (2010) Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. New Phytol 188:597–614PubMedCrossRefGoogle Scholar
  23. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agr Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  24. Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325CrossRefGoogle Scholar
  25. Cavallazzi J, Filho O, Stuermer S, Rygiewicz P, de Mendonca M (2007) Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell Tiss Org Cult 90:117–129CrossRefGoogle Scholar
  26. Charlet P, Deloume JP, Duc G, Thomas-Davis G (1984) Chelation des ions Al (3+) par la acides succinique, aspartique, glutarique et l’histidine. Etude potentiometrique. Bull Soc Chim France 7–8:222–226Google Scholar
  27. Clair TA, Hindar A (2005) Liming for the mitigation of acid rain effects in freshwaters: a review of recent results. Environ Rev 13:91–128CrossRefGoogle Scholar
  28. Clark R (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22CrossRefGoogle Scholar
  29. Clark RB, Zeto SK, Zobel RW (1999) Arbuscular mycorrhizal fungal isolate effectiveness on growth and root colonization of Panicum virgatum in acidic soil. Soil Biol Biochem 31:1757–1763CrossRefGoogle Scholar
  30. Cornejo P, Meier S, Borie G, Rillig M, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160PubMedCrossRefGoogle Scholar
  31. Cuenca G, de Andrade Z, Meneses E (2001) The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant Soil 231:233–241CrossRefGoogle Scholar
  32. Cumming JR, Ning J (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). J Exp Bot 54:1447–1459PubMedCrossRefGoogle Scholar
  33. Cumming J, Weinstein L (1990) Aluminium–mycorrhizal interactions in the physiology of pitch pine seedlings. Plant Soil 125:7–18CrossRefGoogle Scholar
  34. Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature properties and management of volcanic soils. Adv Agron 82:113–182CrossRefGoogle Scholar
  35. de Wit H, Eldhuset T, Mulder J (2010) Dissolved Al reduces Mg uptake in Norway spruce forest: results from a long-term field manipulation experiment in Norway. Forest Ecol Manag 259:2072–2082CrossRefGoogle Scholar
  36. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321PubMedGoogle Scholar
  37. Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.): II. Aluminum stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702PubMedGoogle Scholar
  38. Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. III. Variations in response to zinc among ectomycorrhizal associates. New Phytol 106:535–544Google Scholar
  39. Desai S (2012) Physiological and genetic changes in poplar during mycorrhizal colonization under phosphorus limitation. Dissertation, West Virginia UniversityGoogle Scholar
  40. Diehl P, Mazzarino MJ, Fontenla S (2008) Plant limiting nutrients in Andean-Patagonian woody species: effects of interannual rainfall variation, soil fertility and mycorrhizal infection. For Ecol Manag 255:2973–2980CrossRefGoogle Scholar
  41. Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ et al (2001) Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. BioScience 51:180–198CrossRefGoogle Scholar
  42. Driver J, Holben W, Rillig M (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106CrossRefGoogle Scholar
  43. Eldhuset TD, Swensen B, Wickstrom T, Wollebeak G (2007) Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminum. J Plant Nutr Soil Sci 170(5):645–648CrossRefGoogle Scholar
  44. Etcheverría P (2009) Glomalin in evergreen forest associations, deciduous forest and a plantation of Pseudotsuga menziesii in the X Región, Chile. PhD dissertation, Universidad de La FronteraGoogle Scholar
  45. Evangelou VP (1995) Pyrite oxidation and its control: solution chemistry, surface chemistry, acid mine drainage (AMD), molecular oxidation mechanisms, microbial role, kinetics, control, ameliorates and limitations, microencapsulation. CRC/Lewis, Boca RatonGoogle Scholar
  46. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot-London 104:1263–1280CrossRefGoogle Scholar
  47. Fageria NK, Baligar VC (2003) Fertility management of tropical acid soils for sustainable crop production. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 359–385Google Scholar
  48. Fageria NK, Baligar VC (2008) Aminorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv Agron 99:345–399CrossRefGoogle Scholar
  49. Frazer L (2001) Probing the depths of a solution for acid mine drainage. Environ Health Perspect 109:486–489CrossRefGoogle Scholar
  50. Foy CD, Chaney RL, White MC (1978) The physiology of metal Al-toxicity in plants. Annu Rev Plant Physiol 29:511–566Google Scholar
  51. Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMedCrossRefGoogle Scholar
  52. Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajans (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123CrossRefGoogle Scholar
  53. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530PubMedCrossRefGoogle Scholar
  54. Godbold DL, Jentschke G, Winter S, Marschner P (1998) Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36:757–762CrossRefGoogle Scholar
  55. Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122PubMedCrossRefGoogle Scholar
  56. Gonzalez-Chávez MC, Carrillo-Gonzalez M, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  57. González-Guerrero M, Melville LH, Ferrol N et al (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110PubMedCrossRefGoogle Scholar
  58. Goodwin SB, Sutter TR (2009) Microarray analysis of Arabidopsis genome response to aluminum stress. Biol Plant 53:85–99CrossRefGoogle Scholar
  59. Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337CrossRefGoogle Scholar
  60. Guo P, Bai G, Carver B, Li R, Bernardo A, Baum M (2007) Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genom 277:1–12CrossRefGoogle Scholar
  61. Heijne B, van Dam D, Heil CW, Bobbink R (1996) Acidification effects on mycorrhizal vesicular–arbuscular (VAM) infection, growth and nutrient uptake of established heathland herb species. Plant Soil 179:197–206CrossRefGoogle Scholar
  62. Hoekenga OA, Maron LG, Piñeros MA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743PubMedCrossRefGoogle Scholar
  63. Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Kuster H (2007) Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula. Funct Plant Biol 33:737–748CrossRefGoogle Scholar
  64. Horst WJ, Schmohl N, Kollmeier M, Baluska F, Sivaguru M (1999) Does aluminium affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? Plant Soil 215:163–174CrossRefGoogle Scholar
  65. Hossain MA, Mohd Razi I, Ashrafuzzaman M, Koyama H (2011) Reduction of Al-induced oxidative damage in wheat. Aust J Crop Sci 5:1157–1162Google Scholar
  66. Howeler RH, Sieverding E, Saif SR (1987) Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil 100:249–283CrossRefGoogle Scholar
  67. Huang JW, Grunes DL, Kochian LV (1992a) Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex. Quantification of calcium fluxes using a calcium-selective vibrating microelectrode. Planta 188:414–421CrossRefGoogle Scholar
  68. Huang JW, Shaff JE, Grunes DL, Kochian LV (1992b) Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol 98:230–237PubMedCrossRefGoogle Scholar
  69. Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34CrossRefGoogle Scholar
  70. Inostroza-Blancheteau C, Rengel Z, Alberdi M, Mora ML, Aquea F, Arce-Johnson P, Reyes-Díaz M (2012) Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep 39:2069–2079PubMedCrossRefGoogle Scholar
  71. Janouskova M, Pavlikova D, Macek T, Vosatka M (2005) Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant Soil 272:29–40CrossRefGoogle Scholar
  72. Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618CrossRefGoogle Scholar
  73. Javot H, Penmetsa R, Terzaghi N, Cook D, Harrison M (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. P Natl Acad Sci USA 104:1720–1725CrossRefGoogle Scholar
  74. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16Google Scholar
  75. Joner E, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  76. Jones MD, Hutchinson TC (1988) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flaidum. I. Effects on growth, photosynthesis, respiration and transpiration. New Phytol 108:451–459CrossRefGoogle Scholar
  77. Jones DL, Gilroy S, Larsen PB, Howell SH, Kochian LV (1998) Effect of aluminum on cytoplasmic Ca2+ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta 206:378–387PubMedCrossRefGoogle Scholar
  78. Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminum uptake, production of reactive oxygen species, callosa production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318PubMedCrossRefGoogle Scholar
  79. Karimi A, Khodaverdiloo H, Sepehri M, Sadaghiani MR (2011) Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Afr J Microbiol Res 5:1571–1576Google Scholar
  80. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244CrossRefGoogle Scholar
  81. Kelly CN, Morton JB, Cumming JR (2005) Variation in aluminum resistance among arbuscular mycorrhizal fungi. Mycorrhiza 15:193–201PubMedCrossRefGoogle Scholar
  82. Kidd P, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352PubMedCrossRefGoogle Scholar
  83. Kinraide T (1997) Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluoride complexes of aluminium. J Exp Bot 48:1115–1124CrossRefGoogle Scholar
  84. Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208CrossRefGoogle Scholar
  85. Klug B, Horst WJ (2010) Oxalate exudation into the root-tip water free space confers protection from Al toxicity and allows Al accumulation in the symplast in buckwheat (Fagopyrum esculentum). New Phytol 187:380–391PubMedCrossRefGoogle Scholar
  86. Klugh K, Cumming J (2007) Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112PubMedCrossRefGoogle Scholar
  87. Klugh-Stewart K, Cumming J (2009) Organic acid exudation by mycorrhizal Andropogon virginicus L. (broomsedge) roots in response to aluminum. Soil Biol Biochem 41:367–373CrossRefGoogle Scholar
  88. Kochian L, Hoekenga O, Piñeros M (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493PubMedCrossRefGoogle Scholar
  89. Kochian L, Pineros M, Hoekenga O (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195CrossRefGoogle Scholar
  90. Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum sensitive and an aluminum-resistant cultivar. Plant Physiol 126:397–410PubMedCrossRefGoogle Scholar
  91. Lambais MR, Cardoso E (1989) Germinacao de esporos d crescimento do tubo germinativo de fungos micorrizicos vesiculo-arbusculares em diferentes concentracoes de aluminio (Effects of aluminum on germination of spores and germ tube growth of VAM fungi). Rev Bras Cienc Solo 13:151–154Google Scholar
  92. Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41:353–363PubMedCrossRefGoogle Scholar
  93. Lee YJ, George E (2005) Contributions of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278:361–370CrossRefGoogle Scholar
  94. Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48CrossRefGoogle Scholar
  95. Li XF, Ma JF, Matsumoto H (2000) Pattern of aluminum induced secretion of organic acids differs between rye and wheat. Plant Physiol 123:1537–1543PubMedCrossRefGoogle Scholar
  96. Liu J, Jurandir VM, Jon S, Leon VK (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399PubMedCrossRefGoogle Scholar
  97. Lovelock CE, Wright SF, Nichols KA (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287CrossRefGoogle Scholar
  98. Lux H, Cumming J (2001) Mycorrhizae confer aluminum resistance to tulip-poplar seedlings. Can J For Res 31:694–702Google Scholar
  99. Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–253PubMedCrossRefGoogle Scholar
  100. Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H (1997) Internal detoxification mechanism of Al in hydrangea. Identification of Al form in the leaves. Plant Physiol 113:1033–1039Google Scholar
  101. Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278PubMedCrossRefGoogle Scholar
  102. Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31:687–696PubMedCrossRefGoogle Scholar
  103. Maki T, Nomachi M, Yoshida S, Ezawa T (2008) Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant Soil 310:55–65CrossRefGoogle Scholar
  104. Malajczuk N, Cromack K (1982) Accumulation of calcium oxalate in the mantle of ectomycorrhizal roots of Pinus radiata and Eucalyptus marginata. New Physiol 92:527–531CrossRefGoogle Scholar
  105. Malcová R, Rydlová J, Vosátka M (2003) Metal-free cultivation of Glomus sp. BEG 140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza 13:151–157PubMedCrossRefGoogle Scholar
  106. Marmeisse R, Guidot A, Gay G, Lambilliotte R et al (2004) Hebeloma cylindrosporum—a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol 163:481–498CrossRefGoogle Scholar
  107. Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao CZ, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740PubMedCrossRefGoogle Scholar
  108. Martell AE, Smith RM (1977) Critical stability constants, other organic ligands. Plenum, New York, 496 pGoogle Scholar
  109. Martens D (2001) Nitrogen cycling under different soil management systems. Adv Agron 70:143–189CrossRefGoogle Scholar
  110. Meier S, Bolan N, Borie F, Cornejo P (2012) Phytoremediation of metal polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Tecnol 42:741–775CrossRefGoogle Scholar
  111. Morton JB, Bentivenga SP, Wheeler WW (1993) Germplasm in the international collection of arbuscular and vesicular-arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528Google Scholar
  112. Moyer-Henry K, Silva I, Macfall J et al (2005) Accumulation and localization of aluminium in root tips of loblolly pine seedlings and the associated ectomycorrhiza Pisolithus tinctorius. Plant Cell Environ 28:111–120CrossRefGoogle Scholar
  113. Naik D, Smith E, Cumming JR (2009) Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminium. Tree Physiol 29:423–436PubMedCrossRefGoogle Scholar
  114. Norton SA, Veselý J (2004) Acidification and acid rain. In: Turekian KK (ed) Treatise on geochemistry, vol 9. Holland HD, Amsterdam, pp 367–406Google Scholar
  115. Ofei-Manu P, Wagatsuma T, Ishikawa S, Tawaraya K (2001) The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with al tolerance in several common woody plants. Soil Sci Plant Nutr 47:359–376CrossRefGoogle Scholar
  116. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790CrossRefGoogle Scholar
  117. Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649PubMedCrossRefGoogle Scholar
  118. Panda S, Matsumoto H (2007) Molecular physiology of aluminum toxicity and tolerance in plants. Bot Rev 73:326–347CrossRefGoogle Scholar
  119. Pawlowski L (1998) Chemistry for the protection of the environment 3. Springer, New York, 344 pGoogle Scholar
  120. Peipp H, Maier W, Schmith J et al (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry 44:581–587CrossRefGoogle Scholar
  121. Piñeros M, Magalhaes J, Alves V, Kochian L (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206PubMedCrossRefGoogle Scholar
  122. Pintro J, Barloy J, Fallavier P, Calba H (1998) Effects of different calcium and sulfate concentrations in nutrient solutions on ionic strength values, aluminium activity, and root growth of maize plants. J Plant Nutr 21:2381–2387CrossRefGoogle Scholar
  123. Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139PubMedCrossRefGoogle Scholar
  124. Podila GK, Sreedasyam A, Muratet MA (2009) Populus rhizosphere and the ectomycorrhizal interactome. Crit Rev Plant Sci 28:359–367CrossRefGoogle Scholar
  125. Postma J, Olsson PA, Falkengren-Grerup U (2007) Colonisation of arbuscular mycorrhizal, fine and dark septate endophytic fungi in forbs of acid decideous forests. Soil Biol Biochem 39:400–408CrossRefGoogle Scholar
  126. Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E (2010) Identification of in planta-expressed arbuscular mycorrhizal fungal proteins up on comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol 47:608–618PubMedCrossRefGoogle Scholar
  127. Rengel Z, Zhang W (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. Review. New Phytol 159:295–314CrossRefGoogle Scholar
  128. Rengel Z, Pineros M, Tester M (1995) Transmembrane calcium fluxes during Al stress. Plant Soil 171:125–130CrossRefGoogle Scholar
  129. Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2002) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567CrossRefGoogle Scholar
  130. Rillig M, Mummey D (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  131. Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177CrossRefGoogle Scholar
  132. Robert M (1995) Aluminum toxicity: a major stress for microbial in the environment. In: Huang PM (ed) Environmental impact of soil components interactions: metals, other inorganic and microbial activities. McGill WB, Saskatoon, pp 227–248Google Scholar
  133. Rufyikiri G, Dufey JE, Nootens D, Delvaux B (2000) Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. I. Plant growth and chemical composition. Fruits 55:367–379Google Scholar
  134. Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust J Plant Physiol 22:531–536CrossRefGoogle Scholar
  135. Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Phys 52:527–560CrossRefGoogle Scholar
  136. Ryan MH, McCully ME, Huang CX (2003) Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. New Phytol 160:429–441CrossRefGoogle Scholar
  137. Ryan MH, McCully ME, Huang CX (2007) Relative amounts of soluble and insoluble forms of phosphorus and other elements in intraradical hyphae and arbuscules mycorrhizas. Funct Plant Biol 34:457–464CrossRefGoogle Scholar
  138. Sasaki T, Ezaki B, Matsumoto H (2002) A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat. Plant Cell Physiol 43:177–185PubMedCrossRefGoogle Scholar
  139. Ščančar J, Milačič R (2006) Aluminium speciation in environmental samples: a review. Anal Bioanal Chem 386:999–1012PubMedCrossRefGoogle Scholar
  140. Seguel A, Medina J, Rubio R, Cornejo P, Borie F (2012) Effects of soil aluminum on early arbuscular mycorrhizal colonization of aluminum tolerant wheat and barley cultivars. Chil J Agric Res 72: 449–455Google Scholar
  141. Shen R, Ma JF, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398PubMedCrossRefGoogle Scholar
  142. Sieverding E (1991) Vesicular–arbuscular mycorrhiza management in tropical agrosystems. Deustche Gesellschaft Technische Zusammenarbeit (GTZ) GmbH, EschbornGoogle Scholar
  143. Siqueira JO, Hubbell DH, Mahmud AW (1984) Effect of liming on spore germination, germ tube growth and root colonization by vesicular–arbuscular mycorrhizal fungi. Plant Soil 76:115–124CrossRefGoogle Scholar
  144. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San DiegoGoogle Scholar
  145. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057PubMedCrossRefGoogle Scholar
  146. St Clair SB, Sharpe WE, Lynch JP (2008) Key interactions between nutrient limitation and climatic factors in temperate forests: a synthesis of the sugar maple literature. Can J For Res 38:401–414CrossRefGoogle Scholar
  147. Staß A, Horst WJ (2009) Callose in abiotic stress. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry, and biology of (13)-b-glucans and related polysaccharides. Academic, Burlington, pp 499–524CrossRefGoogle Scholar
  148. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York, 1022 pGoogle Scholar
  149. Sudová R, Jurkiewicz A, Turnau K, Vosátka M (2007) Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43:71–81Google Scholar
  150. Sumner ME, Noble AD (2003) Soil acidification: the world story. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 1–28Google Scholar
  151. Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation–reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other micro-organisms. Mycorrhiza 9:137–144CrossRefGoogle Scholar
  152. Sylvia DM, Williams SE (1992) Vesicular–arbuscular mycorrhizae and environmental stress. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy (Special Publication No. 54), Madison, pp 101–124Google Scholar
  153. Taheri W, Bever J (2010) Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Appl Soil Ecol 45:138–143CrossRefGoogle Scholar
  154. Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254CrossRefGoogle Scholar
  155. Tang C, Rengel Z (2003) Role of plant cation/anion uptake ratio in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 57–81Google Scholar
  156. Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere of VA-mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395CrossRefGoogle Scholar
  157. Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to copper and zinc. Water Air Soil Poll 164:155–172CrossRefGoogle Scholar
  158. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boiler T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  159. Vázquez MD, Poschenrieder C, Corrales I, Barcelo J (1999) Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. Plant Physiol 119:435–444PubMedCrossRefGoogle Scholar
  160. Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136PubMedCrossRefGoogle Scholar
  161. Vosátka M, Batkhuugyin E, Albrechtová J (1999) Response of three arbuscular mycorrhizal fungi to simulated acid rain and aluminium stress. Biol Plant 42:289–296CrossRefGoogle Scholar
  162. Wagatsuma T, Ezoe Y (1985) Effect of pH on ionic species of aluminium in medium and on aluminium toxicity under solution culture. Soil Sci Plant Nutr 31:547–561CrossRefGoogle Scholar
  163. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  164. Wang J, Raman H, Zhou M, Ryan PR, Delhaize E et al (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276PubMedCrossRefGoogle Scholar
  165. Watanabe T, Okada K (2005) Interactive effects of Al, Ca and other cations on root elongation on rice cultivars under low pH. Anna Bot 95:379–385CrossRefGoogle Scholar
  166. Wright S, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586CrossRefGoogle Scholar
  167. Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891CrossRefGoogle Scholar
  168. Yamamoto Y, Yukiko Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208PubMedCrossRefGoogle Scholar
  169. Yamato M, Iwasaki M (2002) Morphological types of arbuscular mycorrhizal fungi in roots of forest floor plants. Mycorrhiza 12:291–296PubMedCrossRefGoogle Scholar
  170. Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol Biochem 37:1569–1572CrossRefGoogle Scholar
  171. Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonization increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935CrossRefGoogle Scholar
  172. Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800PubMedCrossRefGoogle Scholar
  173. Zhen Y, Qi JL, Wang SS, Su J et al (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554PubMedCrossRefGoogle Scholar
  174. Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alex Seguel
    • 1
    • 2
    • 3
  • Jonathan R. Cumming
    • 3
  • Katrina Klugh-Stewart
    • 3
  • Pablo Cornejo
    • 1
    • 2
  • Fernando Borie
    • 1
    • 2
    Email author
  1. 1.Departamento de Ciencias Químicas y Recursos NaturalesUniversidad de La FronteraTemucoChile
  2. 2.Scientific and Technological Nucleus of BioresourcesUniversidad de La FronteraTemucoChile
  3. 3.Department of BiologyWest Virginia UniversityMorgantownUSA

Personalised recommendations