, Volume 22, Issue 8, pp 623–630 | Cite as

Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae)

  • Masahide Yamato
  • Takahiro Yagame
  • Yuko Yoshimura
  • Koji Iwase
Original Paper


The community structure of arbuscular mycorrhizal (AM) fungi associated with Ixeris repens was studied in coastal vegetation near the Tottori sand dunes in Japan. I. repens produces roots from a subterranean stem growing near the soil surface which provides an opportunity to examine the effects of an environmental gradient related to distance from the sea on AM fungal communities at a regular soil depth. Based on partial sequences of the nuclear large subunit ribosomal RNA gene, AM fungi in root samples were divided into 17 phylotypes. Among these, five AM fungal phylotypes in Glomus and Diversispora were dominant near the seaward forefront of the vegetation. Redundancy analysis of the AM fungal community showed significant relationships between the distribution of phylotypes and environmental variables such as distance from the sea, water-soluble sodium in soil, and some coexisting plant species. These results suggest that environmental gradients in the coastal vegetation can be determinants of the AM fungal community.


Glomus intraradices LSU rDNA Principal component analysis (PCA) Redundancy analysis (RDA) Salinity 



We thank the Arid Land Research Center, Tottori University for permitting us to collect plant samples. We also thank the members of the laboratory of Dr. Satoshi Yamada at Tottori University for instructing us on using the atomic absorption spectrophotometer. This study was supported by the Global COE Program “Advanced utilization of fungus/mushroom resources for sustainable society in harmony with nature” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supplementary material

572_2012_439_MOESM1_ESM.xlsx (14 kb)
Table S1 (XLSX 13 kb)
572_2012_439_MOESM2_ESM.xlsx (14 kb)
Table S2 (XLSX 14 kb)
572_2012_439_MOESM3_ESM.xlsx (14 kb)
Table S3 (XLSX 13 kb)


  1. Abe JP, Katsuya K (1995) Vesicular-arbuscular mycorrhizal fungi in coastal dune plant communities II. Spore formation of Glomus spp. Predominates under geographically separated patches of Elymus mollis. Mycoscience 36:1113–1116CrossRefGoogle Scholar
  2. Abe JP, Masuhara G, Katsuya K (1994) Vesicular-arbuscular mycorrhizal fungi in coastal dune plant communities. I. Spore formation of Glomus spp. Predominates under a patch of Elymus mollis. Mycoscience 35:233–238CrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  4. An GH, Miyakawa S, Kawahara A, Osaki M, Ezawa T (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulphate soils: habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528CrossRefGoogle Scholar
  5. Beena KR, Raviraja NS, Arun AB, Sridhar KR (2000) Diversity of arbuscular mycorrhizal fungi on the coastal sand dunes of the west coast of India. Curr Sci 79:1459–1466Google Scholar
  6. Beena KR, Arun AB, Raviraja NS, Sridhar KR (2001) Association of arbuscular mycorrhizal fungi with plants of coastal sand dunes of west coast of India. Trop Ecol 42:213–222Google Scholar
  7. Błaszkowski J, Czerniawska B (2008) Glomus irregulare, a new arbuscular mycorrhizal fungus in the Glomeromycota. Mycotaxon 106:247–267Google Scholar
  8. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agriculture Research, CanberraGoogle Scholar
  9. Carvalho LM, Correia PM, Martins-Loução MA (2004) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170PubMedCrossRefGoogle Scholar
  10. Dandan Z, Zhiwei Z (2007) Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Appl Soil Ecol 37:118–128CrossRefGoogle Scholar
  11. Dixon RK, Garg VK, Rao MV (1993) Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Res Rehabil 7:133–144Google Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  13. Ferrol N, Calvente R, Cano C, Barea JM, Azcón-Aguilar C (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133CrossRefGoogle Scholar
  14. Funatsu Y, Nakatsubo T, Yamaguchi O, Horikoshi T (2005) Effects of arbuscular mycorrhizae on the establishment of the alien plant Oenothera laciniata (Onagraceae) on a Japanese coastal sand dune. J Coastal Res 21:1054–1061CrossRefGoogle Scholar
  15. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321PubMedCrossRefGoogle Scholar
  16. Hooland SM (2003) Analytic Rarefaction 1.3. User’s Guide and Application. Accessed 10 Jan 2011
  17. Kitamura S, Murata G, Koyama T (2002) Colored illustrations of herbaceous plants of Japan, vol1 (Sympetalae) 58th edn. Hoikusha, Osaka, JapanGoogle Scholar
  18. Koske RE (1975) Endogone spores in Australian sand dunes. Can J Bot 53:668–672CrossRefGoogle Scholar
  19. Koske RE, Gemma JN (1995) Scutellospora hawaiiensis: a new species of arbuscular mycorrhizal fungus from Hawaii. Mycologia 87:678–683CrossRefGoogle Scholar
  20. Koske RE, Halvorson WL (1981) Ecological studies of vesicular-arbuscular mycorrhizae in a barrier sand dune. Can J Bot 59:1413–1422CrossRefGoogle Scholar
  21. Koske RE, Walker C (1986a) Glomus globiferum: a new species of endogonaceae with a hyphal peridium. Mycotaxon 26:133–142Google Scholar
  22. Koske RE, Walker C (1986b) Scutellospora (Endogonaceae) with smooth-walled spores from maritime sand dunes: two new species and a redescription of the spores of Scutellospora pellucida and Scutellospora calospora. Mycotaxon 27:219–235Google Scholar
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  24. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790CrossRefGoogle Scholar
  25. Page RDM (1996) An application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358PubMedGoogle Scholar
  26. Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Progress 6:35–44CrossRefGoogle Scholar
  27. Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847PubMedGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:404–425Google Scholar
  29. Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 415–437Google Scholar
  30. Schenck NC, Smith GS (1982) Additional new unreported species of mycorrhizal fungi (Endogonaceae) from Florida. Mycologia 77:566–574Google Scholar
  31. Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Schüßler A, Walker C, Gloucester. Libraries at Royal Botanic Garden Edinburgh, Kew, Botanische Staatssammlung Munich, and Oregon State University. Accessed 9 May 2011
  32. Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151PubMedCrossRefGoogle Scholar
  33. Sridhar KR, Beena KR (2001) Arbuscular mycorrhizal research in coastal sand dunes: a review. Proc Natl Acad Sci India 121:179–205Google Scholar
  34. Stockinger H, Walker C, Schler A (2009) ‘Glomus intraradices DAOM197198’ a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187PubMedCrossRefGoogle Scholar
  35. Sylvia DM (1986) Spatial and temporal distribution of vesicular-arbuscular mycorrhizal fungi associated with Uniola paniculata in Florida foredunes. Mycologia 78:728–734CrossRefGoogle Scholar
  36. ter Braak CFJ, Smilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Biometris, WageningenGoogle Scholar
  37. Trappe JM, Bloss HE, Menge JA (1984) Glomus deserticola sp. nov. Mycotaxon 20:123–127Google Scholar
  38. Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycologia 8:203–206Google Scholar
  39. Truog E (1930) The determination of the readily available phosphorus of soils. J Am Soc Agron 22:874–882CrossRefGoogle Scholar
  40. van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887PubMedCrossRefGoogle Scholar
  41. Walker C, Giovannetti M, Avio L, Citernesi AS, Nicolson TH (1995) A new fungal species forming arbuscular mycorrhizas: Glomus viscosum. Mycol Res 99:1500–1506CrossRefGoogle Scholar
  42. Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249PubMedCrossRefGoogle Scholar
  43. Yamato M, Ikeda S, Iwase K (2009) Community of arbuscular mycorrhizal fungi in drought-resistant plants, Moringa spp., in semiarid regions in Madagascar and Uganda. Mycoscience 50:100–105CrossRefGoogle Scholar
  44. Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Masahide Yamato
    • 1
  • Takahiro Yagame
    • 1
  • Yuko Yoshimura
    • 2
  • Koji Iwase
    • 3
  1. 1.Fungus/Mushroom Resource and Research Center, Faculty of AgricultureTottori UniversityTottoriJapan
  2. 2.The United Graduate School of Agricultural SciencesTottori UniversityTottoriJapan
  3. 3.Department of Natural and Environmental ScienceTeikyo University of ScienceUenoharaJapan

Personalised recommendations