Advertisement

Mycorrhiza

, Volume 22, Issue 7, pp 515–524 | Cite as

Regulation of genes involved in nitrogen utilization on different C/N ratios and nitrogen sources in the model ectomycorrhizal fungus Hebeloma cylindrosporum

  • Meghan Avolio
  • Tobias Müller
  • Anja Mpangara
  • Michael Fitz
  • Ben Becker
  • Alexander Pauck
  • Anja Kirsch
  • Daniel Wipf
Original Paper

Abstract

Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate.

Keywords

Nitrogen transporters Inorganic nitrogen Organic nitrogen Gene expression Carbon/nitrogen ratio 

Notes

Acknowledgements

This research was funded in part by grants from Deutsche Forschungsgemeinschaft (DFG WI1994/2-1 and 2-2), Agence Nationale de la Recherche Française (ANR blanche TRANSLMUT) and Burgundy Region to DW. We thank the Fulbright Organization for providing funding to MA to live in Germany while this research took place. We also thank Cynthia Chang for her help with statistical analyses.

References

  1. Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389CrossRefGoogle Scholar
  2. Benjdia M, Rikirsch E, Müller T, Morel M, Corratge C, Zimmermann S, Chalot M, Frommer WB, Wipf D (2006) Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytol 170:401–410PubMedCrossRefGoogle Scholar
  3. Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. Fems Microbio Rev 24:601–614CrossRefGoogle Scholar
  4. Caddick MX, Peters D, Platt A (1994) Nitrogen Regulation in Fungi. Anton Leeuw Int J G 65:169–177CrossRefGoogle Scholar
  5. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. Fems Microbio Rev 22:21–44CrossRefGoogle Scholar
  6. Chalot M, Brun A, Debaud JC, Botton B (1991) Ammonium-Assimilating Enzymes and Their Regulation in Wild and Nadp-Glutamate Dehydrogenase-Deficient Strains of the Ectomycorrhizal Fungus Hebeloma Cylindrosporum. Physiol Plant 83:122–128CrossRefGoogle Scholar
  7. Chalot M, Brun A, Finlay RD, Soderstrom B (1994) Metabolism of [C-14] Glutamate and [C-14] Glutamine by the Ectomycorrhizal Fungus Paxillus Involutus. Microbiology 140:1641–1649CrossRefGoogle Scholar
  8. Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H, Wipf D, Botton B (2002) An update on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–175CrossRefGoogle Scholar
  9. Chalot M, Kytoviita MM, Brun A, Finlay RD, Soderstrom B (1995) Factors Affecting Amino-Acid-Uptake by the Ectomycorrhizal Fungus Paxillus Involutus. Mycol Res 99:1131–1138CrossRefGoogle Scholar
  10. Chalot M, Plassard C (2011) Ectomycorrhiza and Nitrogen Provision to the Host Tree. In: Polacco J, Todd C (eds) Ecological Aspects of Nitrogen Metabolism in Plants. John Wiley & Sons, Inc, Hoboken, NJGoogle Scholar
  11. Corratge C, Zimmermann S, Lambilliotte RRL, Plassard C, Marmeisse R, Thibaud JB, Lacombe B, Sentenac H (2007) Molecular and functional characterization of a Na + -K + transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 282:26057–26066PubMedCrossRefGoogle Scholar
  12. D'haeseleer P (2005) How does gene expression clustering work? Nat Biotechnol 23:1499–1501PubMedCrossRefGoogle Scholar
  13. Debaud JC, Gay G (1987) Invitro Fruiting under Controlled Conditions of the Ectomycorrhizal Fungus Hebeloma Cylindrosporum Associated with Pinus Pinaster. New Phytol 105:429–435CrossRefGoogle Scholar
  14. Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms - A review. Soil Biol Biochem 42:2058–2067CrossRefGoogle Scholar
  15. Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L, Sacconi C, Giomaro G, Stocchi V (2003) Characterization of the Tuber borchii nitrate reductase gene and its role in ectomycorrhizae. Mol Genet Genomics 269:807–816PubMedCrossRefGoogle Scholar
  16. Guidot A, Verner MC, Debaud JC, Marmeisse R (2005) Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15:167–177PubMedCrossRefGoogle Scholar
  17. Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotech 12:35–73CrossRefGoogle Scholar
  18. Hogberg MN, Baath E, Nordgren A, Arnebrant K, Hogberg P (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs - a hypothesis based on field observations in boreal forest. New Phytol 160:225–238CrossRefGoogle Scholar
  19. Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601PubMedCrossRefGoogle Scholar
  20. Jargeat P, Gay G, Debaud JC, Marmeisse R (2000) Transcription of a nitrate reductase gene isolated from the symbiotic basidiomycete fungus Hebeloma cylindrosporum does not require induction by nitrate. Molec Gen Genet 263:948–956PubMedCrossRefGoogle Scholar
  21. Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L (2003) Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 43:199–205PubMedGoogle Scholar
  22. Javelle A, Morel M, Rodriguez-Pastrana BR, Botton B, Andre B, Marini AM, Brun A, Chalot M (2003) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47:411–430PubMedCrossRefGoogle Scholar
  23. Javelle A, Rodriguez-Pastrana BR, Jacob C, Botton B, Brun A, Andre B, Marini AM, Chalot M (2001) Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 505:393–398PubMedCrossRefGoogle Scholar
  24. Kemppainen MJ, Crespo MCA, Pardo AG (2010) fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by l-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources. Env Microbiol Rep 2:541–553CrossRefGoogle Scholar
  25. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620PubMedCrossRefGoogle Scholar
  26. Lucas RW, Casper BB (2008) Ectomycorrhizal community and extracellular enzyme activity following simulated atmospheric N deposition. Soil Biol Biochem 40:1662–1669CrossRefGoogle Scholar
  27. Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A (2008) A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364PubMedCrossRefGoogle Scholar
  28. Marmeisse R, Guidot A, Gay G, Lambilliotte R, Sentenac H, Combier JP, Melayah D, Fraissinet-Tachet L, Debaud JC (2004) Hebeloma cylindrosporum - a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol 163:481–498CrossRefGoogle Scholar
  29. Martin F et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–U87PubMedCrossRefGoogle Scholar
  30. Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol R 61:17–32Google Scholar
  31. Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D (2007) Nitrogen transport in the ectomycorrhiza association: The Hebeloma cylindrosporum-Pinus pinaster model. Phytochem 68:41–51CrossRefGoogle Scholar
  32. Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416CrossRefGoogle Scholar
  33. Rao PS, Niederpruem DJ (1969) Carbohydrate Metabolism during Morphogenesis of Coprinus Lagopus (Sensu Buller). J Bacteriol 100:1222–1228PubMedGoogle Scholar
  34. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  35. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437CrossRefGoogle Scholar
  36. Salsac L, Chaillou S, Morotgaudry JF, Lesaint C (1987) Nitrate and Ammonium Nutrition in Plants. Plant Physiol Bioch 25:805–812Google Scholar
  37. Smith SE, Read DJ, 2008 Mycorrhizal symbiosis, 3rd ed. Academic Press, Amsterdam ; BostonGoogle Scholar
  38. Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963CrossRefGoogle Scholar
  39. Talbot JM, Treseder KK (2010) Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53:169–179CrossRefGoogle Scholar
  40. Tatry MV et al (2009) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102PubMedCrossRefGoogle Scholar
  41. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355CrossRefGoogle Scholar
  42. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: Sources and consequences. Ecol App 7:737–750Google Scholar
  43. Wiame JM, Grenson M, Arst HN (1985) Nitrogen Catabolite Repression in Yeasts and Filamentous Fungi. Adv Microb Physiol 26:1–88PubMedCrossRefGoogle Scholar
  44. Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124PubMedCrossRefGoogle Scholar
  45. Wong KH, Hynes MJ, Davis MA (2008) Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 7:917–925PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Meghan Avolio
    • 1
    • 2
  • Tobias Müller
    • 1
  • Anja Mpangara
    • 1
  • Michael Fitz
    • 1
  • Ben Becker
    • 1
  • Alexander Pauck
    • 1
  • Anja Kirsch
    • 1
  • Daniel Wipf
    • 1
    • 3
  1. 1.University Bonn, IZMBBonnGermany
  2. 2.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenUSA
  3. 3.UMR INRA 1088 /CNRS 5184/Université Bourgogne, Plante-Microbe-EnvironnementDijon CedexFrance

Personalised recommendations