, Volume 22, Issue 1, pp 51–58 | Cite as

Synergistic interactions between Glomus mosseae and Bradyrhizobium japonicum in enhancing proton release from nodules and hyphae

  • Xiaodong Ding
  • Xinhua Sui
  • Fang Wang
  • Junhua Gao
  • Xinhua He
  • Fusuo Zhang
  • Juncheng Yang
  • Gu Feng
Original Paper


Soybean (Glycine max L. Merr.) seedlings were inoculated with Glomus mosseae (GM) and Bradyrhizobium japonicum (BJ) together or separately to study the effect of interactions on net H+ effluxes of nodules or extraradical hyphae by in vivo vibrating electrode techniques. GM promoted three-fold the H+ effluxes of nodules on mycorrhizal lateral roots and BJ increased eight-fold the net H+ effluxes of hyphae developing in the vicinity of nodules on lateral roots. Increments in plant P content were positively and linearly correlated with the net H+ efflux of nodules and hyphae. It is concluded that increased H+ effluxes of nodules resulted from enhanced nitrogenase activities induced by the presence of the AM fungus in lateral roots. The results point to additive effects of interactions between mycorrhizal fungi and rhizobia in increasing the extent of acidification of the “nodulesphere” and the hyposphere.


Bradyrhizobium japonicum Glomus mosseae Soybean Proton release Nodulesphere Hyphosphere 



The study was partly supported by the National Natural Science Foundation of China (the major program of 30890132 and the Science Fund for Creative Research Groups of 30821003), Chinese University Scientific Fund (2009TD15), and National Basic Research Program of China (2007CB109308). We acknowledge the assistance of Professor Alastair Fitter and Zed Rangel during early writing stages. We would also like to thank Professor Vivienne Gianinazzi-Pearson and two anonymous reviewers for their constructive comments and revisions.

Supplementary material

572_2011_381_MOESM1_ESM.doc (16 kb)
Information S1 Measurement of net H+ efflux using the non-invasive micro-test technique (DOC 16.0 kb)
572_2011_381_MOESM2_ESM.doc (30 kb)
Information S2 Effects of G. mosseae (GM) and/or B. japonicum (BJ) inoculation on P and N concentration (mg g−1 DW) in shoots, roots, and root nodules of soybeans at 56 days after sowing (DOC 30 kb)
572_2011_381_MOESM3_ESM.doc (33 kb)
Information S3 Net H+ effluxes (pmol cm−2 s−1) in taproot (a) and lateral roots (b) under different treatments. Values are means ± SE (n = 4). Different letters above the bars indicate significant differences at P = 0.05. Abbreviations: LR lateral roots; LR+ lateral roots with nodules; LR− lateral roots without nodules; GM sole inoculated with G. mosseae; BJ sole inoculation with B. japonicum; GM/BJ dual inoculated with G. mosseae + B. japonicum (DOC 33 kb)


  1. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  2. Allen SE (1989) Chemical analysis of ecological materials. Blackwell, OxfordGoogle Scholar
  3. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefGoogle Scholar
  4. Asimi S, Gianinazzi-Pearson V, Gianinazzi S (1980) Influence of increasing soil phosphorus levels on interactions between vesicular–arbuscular mycorrhizae and Rhizobium in soybeans. Can J Bot 58:2200–2205CrossRefGoogle Scholar
  5. Bell P, Hallmark W, Sabbe W, Dombeck D (1995) Diagnosing nutrient deficiencies in soybean, using M-DRIS and critical nutrient level procedures. Agron J 87:859–865CrossRefGoogle Scholar
  6. Bethlenfalvay G, Yoder J (1981) The GlycineGlomusRhizobium symbiosis. Physiol Plant 52:141–145CrossRefGoogle Scholar
  7. Bethlenfalvay G, Pacovsky R, Bayne H, Stafford A (1982) Interactions between nitrogen fixation, mycorrhizal colonization, and host-plant growth in the PhaseolusRhizobiumGlomus symbiosis. Plant Physiol 70:446–450PubMedCrossRefGoogle Scholar
  8. Bethlenfalvay G, Brown M, Stafford A (1985) The GlycineGlomusRhizobium symbiosis: II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1058PubMedCrossRefGoogle Scholar
  9. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  10. Day D, Poole P, Tyerman S, Rosendahl L (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58:61–71PubMedCrossRefGoogle Scholar
  11. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  12. Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467PubMedCrossRefGoogle Scholar
  13. Hardy R, Holsten R, Jackson E, Burns R (1968) The acetylene–ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207PubMedCrossRefGoogle Scholar
  14. He XH, Xu MG, Qiu GY, Zhou JB (2009) Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. JPE 2:107–118Google Scholar
  15. Hinsinger P, Bengough A, Vetterlein D, Young I (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  16. Hinsinger P, Gobran G, Gregory P, Wenzel W (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303PubMedCrossRefGoogle Scholar
  17. Johansson J, Paul L, Finlay R (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  18. Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. PNAS 104:11192–11196PubMedCrossRefGoogle Scholar
  19. Li X, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root–soil and hyphae–soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119:397–404CrossRefGoogle Scholar
  20. Lodwig E, Hosie A, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie J, Poole P (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422:722–726PubMedCrossRefGoogle Scholar
  21. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:48–64CrossRefGoogle Scholar
  22. Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207PubMedCrossRefGoogle Scholar
  23. Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188PubMedCrossRefGoogle Scholar
  24. Raven J, Smith F (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76:415–431CrossRefGoogle Scholar
  25. Raven J, Franco A, de Jesus E, Jacob-Neto J (1990) H+ extrusion and organic-acid synthesis in N2-fixing symbioses involving vascular plants. New Phytol 114:369–389CrossRefGoogle Scholar
  26. SAS Institute Inc (1989) SAS/STAT user’s guide. SAS Institute, CaryGoogle Scholar
  27. Sas L, Rengel Z, Tang C (2001) Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci 160:1191–1198PubMedCrossRefGoogle Scholar
  28. Scheublin T, Ridgway K, Young J, Van Der Heijden M (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246PubMedCrossRefGoogle Scholar
  29. Scheublin T, van der Heijden M (2006) Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol 172:732–738PubMedCrossRefGoogle Scholar
  30. Shi R (1994) Determination of the total nitrogen in plant materials. In: Shi RH, Bao SD, Qin HY, An ZS (eds) Soil agriculture chemistry analysis method. China Agriculture Press, Beijing, pp 213–216Google Scholar
  31. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306PubMedCrossRefGoogle Scholar
  32. Tang C, Hinsinger P, Drevon J, Jaillard B (2001) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Bot 88:131–138CrossRefGoogle Scholar
  33. Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification funvtionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspectes of mycorrhizae. INRA Press, Paris, pp 217–221Google Scholar
  34. van der Heijden M, Bakker R, Verwaal J, Scheublin T, Rutten M, van Logtestijn R, Staehelin C (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187PubMedCrossRefGoogle Scholar
  35. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedCrossRefGoogle Scholar
  36. Yao Q, Li X, Feng G, Christie P (2001) Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230:279–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xiaodong Ding
    • 1
  • Xinhua Sui
    • 2
  • Fang Wang
    • 1
  • Junhua Gao
    • 1
  • Xinhua He
    • 3
  • Fusuo Zhang
    • 1
  • Juncheng Yang
    • 4
  • Gu Feng
    • 1
  1. 1.Key Laboratory of Plant–Soil Interactions, Ministry of Education, College of Resource and Environmental ScienceChina Agricultural UniversityBeijingChina
  2. 2.State Key Laboratories for Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
  3. 3.Northern Research Station, USDA Forest Service and School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  4. 4.Institute of Agricultural Resources & Regional PlanningCAASBeijingChina

Personalised recommendations