Advertisement

Mycorrhiza

, Volume 21, Issue 4, pp 315–321 | Cite as

Uvitex2B: a rapid and efficient stain for detection of arbuscular mycorrhizal fungi within plant roots

  • Nathalie Diagne
  • Jacques Escoute
  • Marc Lartaud
  • Jean Luc Verdeil
  • Claudine Franche
  • Aboubacry Kane
  • Didier Bogusz
  • Diegane Diouf
  • Robin Duponnois
  • Sergio SvistoonoffEmail author
Short Note

Abstract

The study of arbuscular mycorrhiza often requires the staining of fungal structures using specific dyes. Fluorescent dyes such as acid fuchsin and wheat germ agglutinin conjugates give excellent results, but these compounds are either hazardous or very expensive. Here, we show that a safer and inexpensive dye, Uvitex2B, can be efficiently used to stain intraradical fungal structures formed by the arbuscular mycorrhizal fungus Glomus intraradices in three plant species: carrot, Casuarina equisetifolia, and Medicago truncatula. The intensity and stability of Uvitex2B allow the acquisition of high-quality images using not only confocal laser scanning microscopy but also epifluorescence microscopy coupled with image deconvolution. Furthermore, we demonstrate that Uvitex2B and β-glucuronidase staining are compatible and can thus be used to reveal arbuscular mycorrhizal structures in the context of promoter activation analysis.

Keywords

Arbuscular mycorrhizal fungi (AMF) Uvitex2B Confocal laser scanning microscopy (CLSM) ProMtEnod11::gus 

Notes

Acknowledgments

We are grateful to G. Bécard for providing G. intraradices starting cultures and C. Bournaud for providing carrot roots colonized with G. clarum. We would like to thank D. Moukouanga, V. Vaissayre, and J. Bonneau for their help with plant care and histochemical staining. We also thank E. Duhoux and Y. Prin for their critical reading of the manuscript. This work was funded by the IRD and CIRAD and grants from the Département Soutien et Formation des Communautés Scientifiques du Sud (DSF/IRD).

Supplementary material

572_2010_357_MOESM1_ESM.mp4 (499 kb)
Fig. S1a Carrot and C. equisetifolia roots (a and b, respectively) colonized by G. intraradices stained with Uvitex2B and acquired using CLSM. The animation, assembled using a z stack, allows observation of the infection pathway: intracellular filaments give rise to several small arbuscules in the case of the carrot (=Paris-type), and intercellular filaments give rise to a single intracellular arbuscule in the case of C. equisetifolia (=Arum-type; MP4 499 kb)
572_2010_357_MOESM2_ESM.mp4 (354 kb)
Fig. S1b (MP4 354 kb)
572_2010_357_Fig3_ESM.jpg (23 kb)
Fig. S2

Carrot (a), C. equisetifolia (b), and M. truncatula (c) roots colonized by G. intraradices stained with Uvitex2B, acquired using epifluorescence microscopy. These are the raw images corresponding to Fig. 1d–f before deconvolution. Bar = 10 μm (JPEG 23 kb)

572_2010_357_MOESM3_ESM.eps (298 kb)
High-Resolution (EPS, 297 kb)

References

  1. Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62:2128–2134CrossRefGoogle Scholar
  2. Chabaud M, Venard C, Defaux-Petras A, Bécard G, Barker DG (2002) Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytol 156:265–273CrossRefGoogle Scholar
  3. Charron D, Pingret J, Chabaud M, Journet E, Barker DG (2004) Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression. Plant Physiol 136:3582–3593PubMedCrossRefGoogle Scholar
  4. Combes RD, Haveland-Smith RB (1982) A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutat Res Rev Genet Toxicol 98:101–243Google Scholar
  5. Czymmek KJ, Whallon JH, Klomparens KL (1994) Confocal microscopy in mycological research. Exp Mycol 18:275–293CrossRefGoogle Scholar
  6. Douds DD (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza 12:163–167PubMedCrossRefGoogle Scholar
  7. Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005PubMedCrossRefGoogle Scholar
  8. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360PubMedCrossRefGoogle Scholar
  9. Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420PubMedCrossRefGoogle Scholar
  10. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932PubMedCrossRefGoogle Scholar
  11. Giovannetti M, Avio L, Salutini L (1991) Morphological, cytochemical, and ontogenetic characteristics of a new species of vesicular-arbuscular mycorrhizal fungus. Can J Bot 69:161–167Google Scholar
  12. Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. New Phytol 123:115–122CrossRefGoogle Scholar
  13. IARC (1987) International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans. Overall evaluations of carcinogenicity: an updating of IARC monographs, volumes 1 to 42, supplement 7Google Scholar
  14. IARC (1999) International Agency for Research on Cancer monographs on the evaluation of carcinogenic risks to humans, vol. 29Google Scholar
  15. Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725PubMedCrossRefGoogle Scholar
  16. Moldenhauer J, Moerschbacher BM, Van der Westhuizen AJ (2006) Histological investigation of stripe rust (Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars. Plant Pathol 55:469–474CrossRefGoogle Scholar
  17. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  18. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  19. Svistoonoff S, Laplaze L, Liang J, Ribeiro A, Gouveia MC, Auguy F, Fevereiro P, Franche C, Bogusz D (2004) Infection related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. Plant Physiol 136:3191–3197PubMedCrossRefGoogle Scholar
  20. Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedGoogle Scholar
  21. Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404Google Scholar
  22. Wachsmuth ED (1988) A comparison of the highly selective fluorescence staining of fungi in tissue sections with Uvitex 2B and Calcofluor White M2R. Histochem J 20:215–221PubMedCrossRefGoogle Scholar
  23. Walker C, Giovannetti M, Avio L, Citernesi AS, Nicolson TH (1995) A new fungal species forming arbuscular mycorrhizas: Glomus viscosum. Mycol Res 99:1500–1506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nathalie Diagne
    • 1
    • 2
    • 3
  • Jacques Escoute
    • 4
  • Marc Lartaud
    • 4
  • Jean Luc Verdeil
    • 4
  • Claudine Franche
    • 3
  • Aboubacry Kane
    • 1
    • 2
  • Didier Bogusz
    • 3
  • Diegane Diouf
    • 1
    • 2
  • Robin Duponnois
    • 2
    • 5
  • Sergio Svistoonoff
    • 3
    Email author
  1. 1.Département de Biologie VégétaleUniversité Cheikh Anta Diop (UCAD)DakarSenegal
  2. 2.Laboratoire Commun de Microbiologie IRD/ISRA/UCADCentre de Recherche de Bel AirDakarSenegal
  3. 3.Groupe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées (DIAPC)Institut de Recherche pour le Développement (IRD)Montpellier Cedex 5France
  4. 4.Plateau d’Histocytologie et d’Imagerie VégétaleMRI/ CIRAD/BIOS/UMR DAPMontpellier Cedex 5France
  5. 5.Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), TA10/J, IRD, UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2Montpellier Cedex 5France

Personalised recommendations