Mycorrhiza

, Volume 21, Issue 5, pp 403–412 | Cite as

Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment

  • Petr Kohout
  • Zuzana Sýkorová
  • Mohammad Bahram
  • Věroslava Hadincová
  • Jana Albrechtová
  • Leho Tedersoo
  • Martin Vohník
Original Paper

Abstract

This study aimed to elucidate the relationship between ericaceous understorey shrubs and the diversity and abundance of ectomycorrhizal fungi (EcMF) associated with the invasive Pinus strobus and native Pinus sylvestris. Seedlings of both pines were grown in mesocosms and subjected to three treatments simulating different forest microhabitats: (a) grown in isolation and grown with (b) Vaccinium myrtillus or (c) Vaccinium vitis-idaea. Ericaceous plants did not act as a species pool of pine mycobionts and inhibited the ability of the potentially shared species Meliniomyces bicolor to form ectomycorrhizae. Similarly, Ericaceae significantly reduced the formation of Thelephora terrestris ectomycorrhizae in P. sylvestris. EcMF species composition in the mesocosms was strongly affected by both the host species and the presence of an ericaceous neighbour. When grown in isolation, P. strobus root tips were predominantly colonised by Wilcoxina mikolae, whereas those of P. sylvestris were more commonly colonised by Suillus and Rhizopogon spp. Interestingly, these differences were less evident (Suillus + Rhizopogon spp.) or absent (W. mikolae) when the pines were grown with Ericaceae. P. strobus exclusively associated with Rhizopogon salebrosus s.l., suggesting the presence of host specificity at the intrageneric level. Ericaceous plants had a positive effect on colonisation of P. strobus root tips by R. salebrosus s.l. This study demonstrates that the interaction of selective factors such as host species and presence of ericaceous plants may affect the realised niche of the ectomycorrhizal fungi.

Keywords

Plant invasions Seedlings establishment Ericoid mycorrhiza Rhizoscyphus ericae aggregate Suillus spp. Rhizopogon salebrosus complex Meliniomyces bicolor Common mycorrhizal networks 

Supplementary material

572_2010_350_MOESM1_ESM.pdf (36 kb)
Supplementary material S1Numbers of EcM root tips colonised by different morphotypes in each pot. Each row represents a single pot. Sy Pinus sylvestris grown in isolation, SyVm P. sylvestris gown with Vaccinium myrtillus, SyVv P. sylvestris grown with V. vitis-idaea, St P. strobus grown in isolation, StVm P. strobus grown with V. myrtillus, StVv P. strobus grown with V. vitis-idaea, nm non-mycorrhizal. (PDF 36 kb)
572_2010_350_MOESM2_ESM.pdf (38 kb)
Supplementary material S2Numbers of sequences obtained from all suilloid EcM fungi in each pot. Each row represents a single pot. Sy Pinus sylvestris grown in isolation, SyVm P. sylvestris grown with Vaccinium myrtillus, SyVv P. sylvestris grown with V. vitis-idaea, St P. strobus grown in isolation, StVm P. strobus grown with V. myrtillus, StVv P. strobus grown with V. vitis-idaea. EcM fungi: SBO Suillus bovinus, SVA S. variegatus, SGR1 S. granulatus 1, SGR2 S. granulatus 2, SLU S. luteus, RRO Rhizopogon roseolus s.l., RLU R. luteolus, RSA R. salebrosus s.l. (PDF 37 kb)
572_2010_350_MOESM3_ESM.pdf (223 kb)
Supplementary material S3Phylogenetic tree of part of Rhizoscyphus ericae aggregate based on a neighbour-joining analysis of 470 characters of ITS1, 5,8S rDNA and part of the ITS2 sequences. Numbers above branches denote neighbour-joining bootstrap values from 1,000 replications. The tree was rooted using sequences of Hymenoscyphus fructigenus and Anguillospora crassa. Sequences obtained in the present study are shown in bold. They are labelled with the database accession number, the host plant species from which they were obtained and the cultivation treatment (Sy Pinus sylvestris grown in isolation, SyVm P. sylvestris gown with Vaccinium myrtillus, St P. strobus grown in isolation). The parentheses show the delimitation of the fungal taxa. (PDF 223 kb)
572_2010_350_MOESM4_ESM.pdf (256 kb)
Supplementary material S4Phylogenetic tree of part of Rhizopogon salebrosus s.l. based on a neighbour-joining analysis of 503 characters of ITS1, 5,8S rDNA and part of the ITS2 sequences. Numbers denote neighbour-joining bootstrap values from 1,000 replications. The tree was rooted using sequence of Rhizopogon roseolus. Sequences obtained in the present study are shown in bold. R. salebrosus fruit bodies’ sequences obtained from the EMBL database are labelled with the database accession number and country of origin; EMBL database sequences originating from root tips are labelled in addition with the host plant species. (PDF 256 kb)

References

  1. Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Koljalg U (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285PubMedCrossRefGoogle Scholar
  2. Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. New Phytol 152:139–149CrossRefGoogle Scholar
  3. Bruns TD, Peay KG, Boynton PJ, Grubisha LC, Hynson NA, Nguyen NH, Rosenstock NP (2009) Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment. New Phytol 181:463–470PubMedCrossRefGoogle Scholar
  4. Carrillo-Gavilan MA, Vila M (2010) Little evidence of invasion by alien conifers in Europe. Divers Distrib 16:203–213CrossRefGoogle Scholar
  5. Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97:950–963CrossRefGoogle Scholar
  6. Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319PubMedCrossRefGoogle Scholar
  7. Curlevski NJA, Chambers SM, Anderson IC, Cairney JWG (2009) Identical genotypes of an ericoid mycorrhiza-forming fungus occur in roots of Epacris pulchella (Ericaceae) and Leptospermum polygalifolium (Myrtaceae) in an Australian sclerophyll forest. FEMS Microbiol Ecol 67:411–420PubMedCrossRefGoogle Scholar
  8. Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484PubMedCrossRefGoogle Scholar
  9. Gardes M, Bruns TD (1993) Its primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  10. Genney DR, Alexander IJ, Hartley SE (2000) Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas. J Exp Bot 51:1117–1125PubMedCrossRefGoogle Scholar
  11. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390PubMedCrossRefGoogle Scholar
  12. Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ (2009) Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. New Phytol 182:359–366CrossRefGoogle Scholar
  13. Hadincová V, Köhnleinová I, Marešová J (2007) Invasive behaviour of white pine (Pinus strobus L.) in sandstone areas in the Czech Republic. In: Härtel H, Cílek V, Herben T, Jackson A, Williams R (eds) Sandstones Landscapes. Academia, Prague, pp 219–224Google Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  15. Hambleton S, Sigler L (2005) Meliniomyces, anew anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27CrossRefGoogle Scholar
  16. Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102Google Scholar
  17. Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440PubMedCrossRefGoogle Scholar
  18. Iwanski M, Rudawska M, Leski T (2006) Mycorrhizal associations of nursery grown Scots pine (Pinus sylvestris L.) seedlings in Poland. Ann For Sci 63:715–723CrossRefGoogle Scholar
  19. Jacobson KM, Miller OK (1992) Physiological variation between tree associated populations of Suillus granulatus as determined by in vitro mycorrhizal synthesis experiments. Can J Bot 70:26–31CrossRefGoogle Scholar
  20. Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364CrossRefGoogle Scholar
  21. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170CrossRefGoogle Scholar
  22. Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107PubMedCrossRefGoogle Scholar
  23. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  24. Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807PubMedCrossRefGoogle Scholar
  25. Krpata D, Muhlmann O, Kuhnert R, Ladurner H, Göbl F, Peintner U (2007) High diversity of ectomycorrhizal fungi associated with Arctostaphylos uva-ursi in subalpine and alpine zones: potential inoculum for afforestation. For Ecol Manag 250:167–175CrossRefGoogle Scholar
  26. Kubartová A (2007) Decomposition of needle litter in Pinus sylvestris and Pinus strobus forests in the Bohemian Switzerland National Park (Czech Republic). In: Härtel H, Cílek V, Herben T, Jackson A, Williams R (eds) Sandstones landscapes. Academia, Prague, pp 234–237Google Scholar
  27. Leski T, Aučina A, Skridaila A, Pietras M, Riepšas E, Rudawska M (2010) Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. Mycorrhiza 20:473–481PubMedCrossRefGoogle Scholar
  28. Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115CrossRefGoogle Scholar
  29. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  30. Mikola P (1969) Afforestation of treeless areas. Unasylva 23:S1–S20Google Scholar
  31. Molina R, Trappe JM (1994) Biology of the ectomycorrhizal genus, Rhizopogon. 1. Host associations, host-specificity and pure culture syntheses. New Phytol 126:653–675CrossRefGoogle Scholar
  32. Morris MH, Smith ME, Rizzo DM, Rejmánek M, Bledsoe CS (2008) Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytol 178:167–176PubMedCrossRefGoogle Scholar
  33. Morris MH, Perez-Perez MA, Smith ME, Bledsoe CS (2009) Influence of host species on ectomycorrhizal communities associated with two co-occurring oaks (Quercus spp.) in a tropical cloud forest. FEMS Microbiol Ecol 69:274–287PubMedCrossRefGoogle Scholar
  34. Nilsson MC, Hogberg P, Zackrisson O, Wang FY (1993) Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus silvestris. Can J Bot 71:620–628CrossRefGoogle Scholar
  35. Nožička J (1965) Zavádění vejmutovky v Českých zemích do r. 1938 (White pine introduction into the Czech countries up to year 1938). Práce výzkumného ústavu lesnického ČSSR 31:41–67Google Scholar
  36. Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359PubMedCrossRefGoogle Scholar
  37. Pickles BJ, Genney DR, Potts JM, Lennon JJ, Anderson IC, Alexander IJ (2010) Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytol 186:755–768PubMedCrossRefGoogle Scholar
  38. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  39. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol S 40:699–715CrossRefGoogle Scholar
  40. R Core Development Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  41. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391CrossRefGoogle Scholar
  42. Read DJ (1998) The mycorrhizal status of pines. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 324–340Google Scholar
  43. Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457PubMedCrossRefGoogle Scholar
  44. Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions. A global perspective. SCOPE 37. Wiley, Chichester, pp 369–388Google Scholar
  45. Richard F, Selosse MA, Gardes M (2009) Facilitated establishment of Quercus ilex in shrub-dominated communities within a Mediterranean ecosystem: do mycorrhizal partners matter? FEMS Microbiol Ecol 68:14–24PubMedCrossRefGoogle Scholar
  46. Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93PubMedCrossRefGoogle Scholar
  47. Rusca TA, Kennedy PG, Bruns TD (2006) The effect of different pine hosts on the sampling of Rhizopogon spore banks in five Eastern Sierra Nevada forests. New Phytol 170:551–560PubMedCrossRefGoogle Scholar
  48. Selosse MA, Richard F, He XH, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628PubMedCrossRefGoogle Scholar
  49. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, AmsterdamGoogle Scholar
  50. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  51. Tedersoo L, Suvi T, Beaver K, Koljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333PubMedCrossRefGoogle Scholar
  52. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Koljalg U (2008a) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490PubMedCrossRefGoogle Scholar
  53. Tedersoo L, Suvi T, Jairus T, Koljalg U (2008b) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201PubMedCrossRefGoogle Scholar
  54. Tedersoo L, Partel K, Jairus T, Gates G, Poldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178PubMedCrossRefGoogle Scholar
  55. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  56. Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol 170:873–883PubMedCrossRefGoogle Scholar
  57. van der Heijden EW, Kuyper TW (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680CrossRefGoogle Scholar
  58. van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37PubMedCrossRefGoogle Scholar
  59. Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol 164:183–192CrossRefGoogle Scholar
  60. Vohník M, Fendrych M, Albrechtová J, Vosátka M (2007a) Intracellular colonisation of Rhododendron and Vaccinium roots by Cenococcum geophilum, Geomyces pannorum and Meliniomyces variabilis. Folia Microbiol 52:407–414CrossRefGoogle Scholar
  61. Vohník M, Fendrych M, Kolařík M, Gryndler M, Hršelová H, Albrechtová J, Vosátka M (2007b) The ascomycete Meliniomyces variabilis isolated from a sporocarp of Hydnotrya tulasnei (Pezizales) intracellularly colonises roots of ecto- and ericoid mycorrhizal host plants. Czech Mycol 59:215–226Google Scholar
  62. Vrålstad T (2004) Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol 164:7–10CrossRefGoogle Scholar
  63. Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata—the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563CrossRefGoogle Scholar
  64. Vrålstad T, Schumacher T, Taylor AFS (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143–152CrossRefGoogle Scholar
  65. Walbert K, Ramsfield TD, Ridgway HJ, Jones EE (2010) Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel associations determined by molecular analysis. Mycorrhiza 20:209–215PubMedCrossRefGoogle Scholar
  66. Walker JF, Miller OK, Lei T, Semones S, Nilsen E, Clinton BD (1999) Suppression of ectomycorrhizae on canopy tree seedlings in Rhododendron maximum L.-(Ericaceae) thickets in the southern Appalachians. Mycorrhiza 9:49–56CrossRefGoogle Scholar
  67. Walker JF, Miller OK, Horton JL (2005) Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains. Mol Ecol 14:829–838PubMedCrossRefGoogle Scholar
  68. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (eds) PCR—protocols and applications—a laboratory manual. Academic, New York, pp 315–322Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Petr Kohout
    • 1
    • 2
  • Zuzana Sýkorová
    • 1
  • Mohammad Bahram
    • 3
    • 5
  • Věroslava Hadincová
    • 4
  • Jana Albrechtová
    • 2
    • 1
  • Leho Tedersoo
    • 3
    • 5
  • Martin Vohník
    • 1
    • 2
  1. 1.Department of Mycorrhizal SymbiosesInstitute of Botany ASCRPrůhoniceCzech Republic
  2. 2.Department of Experimental Plant Biology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  3. 3.Institute of Ecology and Earth SciencesTartu UniversityTartuEstonia
  4. 4.Department of Population EcologyInstitute of Botany ASCRPrůhoniceCzech Republic
  5. 5.Natural History MuseumTartu UniversityTartuEstonia

Personalised recommendations