, Volume 21, Issue 1, pp 1–16 | Cite as

Methods for large-scale production of AM fungi: past, present, and future

  • Marleen IJdo
  • Sylvie Cranenbrouck
  • Stéphane Declerck


Many different cultivation techniques and inoculum products of the plant-beneficial arbuscular mycorrhizal (AM) fungi have been developed in the last decades. Soil- and substrate-based production techniques as well as substrate-free culture techniques (hydroponics and aeroponics) and in vitro cultivation methods have all been attempted for the large-scale production of AM fungi. In this review, we describe the principal in vivo and in vitro production methods that have been developed so far. We present the parameters that are critical for optimal production, discuss the advantages and disadvantages of the methods, and highlight their most probable sectors of application.


Inoculum production In vitro cultivation ROC Hydroponics Aeroponics NFT 



This research was funded by a Marie Curie Early-Stage Research Training Fellowship of the European Community’s Sixth Framework Program, under contract number MEST CT-2005-021016. S.C. acknowledges the financial support from the Belgian Federal Office for Scientific, Technical, and Cultural affairs under contract number C4/00/001.


  1. Adholeya A, Tiwari P, Singh R (2005) Large-scale production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 315–338CrossRefGoogle Scholar
  2. Amijee F, Stribley DP, Tinker PB (1993) The development of endomycorrhizal root systems. VIII effects of soil phosphorus and fungal colonization on the concentration of soluble carbohydrates in roots. New Phytol 123:297–306CrossRefGoogle Scholar
  3. Avio L, Giovannetti M (1988) Vesicular–arbuscular mycorrhizal infection of lucerne roots in a cellulose-amended soil. Plant Soil 112:99–104CrossRefGoogle Scholar
  4. Bécard G, Fortin JA (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218CrossRefGoogle Scholar
  5. Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedGoogle Scholar
  6. Biermann B, Linderman RG (1983) Use of vesicular–arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105CrossRefGoogle Scholar
  7. Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992. doi: 10.1111/j.1469-8137.2005.01374.x CrossRefPubMedGoogle Scholar
  8. Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microb Interact 14:695–700. doi: 10.1094/MPMI.2001.14.6.695 CrossRefGoogle Scholar
  9. Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80:120–130CrossRefGoogle Scholar
  10. Cano CP, Bago A (2007) Aseptic mycorrhization inoculant and in vitro and ex vitro application methods. WO/2007/014974Google Scholar
  11. Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321CrossRefGoogle Scholar
  12. Chen B, Christie P, Li X (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:185–192. doi: 10.1016/S0045-6535(00)00124-7 CrossRefPubMedGoogle Scholar
  13. Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck D (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 341–375CrossRefGoogle Scholar
  14. Declerck S, Stullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585CrossRefGoogle Scholar
  15. Declerck S, D’Or D, Cranenbrouck S, Le Boulengé E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230CrossRefGoogle Scholar
  16. Declerck S, IJdo M, Fernandez K, Voets L, de la Providencia I (2009) Method and system for in vitro mass production of arbuscular mycorrhizal fungi. WO/2009/090220Google Scholar
  17. Diop TA, Bécard G, Piche Y (1992) Long-term in vitro culture of an endomycorrhizal fungus Gigaspora margarita, on Ri T-DNA transformed roots of carrot. Symbiosis 12:249–259Google Scholar
  18. Dodd JC, Arias I, Koomen I, Hayman DS (1990a) The management of populations of vesicular–arbuscular mycorrhizal fungi in acid-infertile soils of savanna ecosystem. I. The effect of pre-cropping and inoculation with VAM-fungi on plant growth and nutrition in the field. Plant Soil 122:229–240CrossRefGoogle Scholar
  19. Dodd JC, Arias I, Koomen I, Hayman DS (1990b) The management of populations of vesicular–arbuscular mycorrhizal fungi in acid-infertile soils of savanna ecosystem. II The effects of pre-crops on the spore populations of native and introduced VAM-fungi. Plant Soil 122:241–247CrossRefGoogle Scholar
  20. Douds DD Jr (1994) Relationship between hyphal and arbuscular colonization and sporulation in a mycorrhiza of Paspalum notatum Flugge. New Phytol 126:233–237. doi: 10.1111/j.1469-8137.1994.tb03941.x CrossRefGoogle Scholar
  21. Douds DD Jr (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza 12:163–167. doi: 10.1007/s00572-002-0174-9 CrossRefPubMedGoogle Scholar
  22. Douds DD Jr, Schenck NC (1990a) Increased sporulation of vesicular–arbuscular mycorrhizal fungi by manipulation of nutrient regimens. Appl Environ Microbiol 56:413–418PubMedGoogle Scholar
  23. Douds DD Jr, Schenck NC (1990b) Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytol 116:621–627CrossRefGoogle Scholar
  24. Douds DD Jr, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 85:15–21. doi: 10.4141/P03-168 Google Scholar
  25. Douds DD Jr, Nagahashi G, Pfeffer PE, Reider C, Kayser WM (2006) On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Biores Tech 97:809–818. doi: 10.1016/j.biortech.2005.04.015 CrossRefGoogle Scholar
  26. Dugassa DG, Grunewaldt-Stöcker G, Schönbeck F (1995) Growth of Glomus intraradices and its effect on linseed (Linum usitatissimum L.) in hydroponic culture. Mycorrhiza 5:279–282. doi: 10.1007/BF00204962 Google Scholar
  27. Dupré de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934. doi: 10.1111/j.1462-2920.2006.01070.x CrossRefGoogle Scholar
  28. Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544CrossRefGoogle Scholar
  29. Elmes RP, Mosse B (1984) Vesicular-arbuscular endomycorrhizal inoculum production II Experiments with maize (Zea mays) and other hosts in nutrient flow culture. Can J Bot 62:1531–1536CrossRefGoogle Scholar
  30. Elsen A, Declerck S, De Waele D (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311. doi: 10.1128/AEM.69.7.4308-4311.2003 CrossRefPubMedGoogle Scholar
  31. Feldmann F, Grotkass C (2002) Directed inoculum production—shall we be able to design AMF populations to achieve predictable symbiotic effectiveness? In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Basel, pp 261–279Google Scholar
  32. Fernandez F, Dellamico JM, Perez Y (2006) Inoculum mycorhizogene liquide. WO/2006/060968Google Scholar
  33. Fontaine J, Grandmougin-Ferjani A, Glorian V, Durand R (2004) 24-Methyl:methylene sterols increase in monoxenic roots after colonization by arbuscular mycorrhizal fungi. New Phytol 163:159–167. doi: 10.1111/j.1469-8137.2004.01075.x CrossRefGoogle Scholar
  34. Fortin JA, St-Arnaud M, Hamel C, Chaverie C, Jolicoeur M (1996) Aseptic in vitro endomycorrhizal spore mass production. US Pat. No. 5554530Google Scholar
  35. Furlan V, Fortin JA (1977) Effects of light intensity on the formation of vesicular–arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora. New Phytol 79:335–340CrossRefGoogle Scholar
  36. Gadkar V, Driver JD, Rillig MC (2006) A novel in vitro cultivation system to produce and isolate soluble factors released from hyphae of arbuscular mycorrhizal fungi. Biotechnol Lett 28:1071–1076. doi: 10.1007/s10529-006-9055-1 CrossRefPubMedGoogle Scholar
  37. Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48. doi: 10.1007/s005720050286 CrossRefGoogle Scholar
  38. Gaur A, Adholeya A (2002) Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218. doi: 10.1007/s00374-002-0457-5 CrossRefGoogle Scholar
  39. Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, BaselGoogle Scholar
  40. Gryndler M, Jansa J, Hršelová H, Chvátalové I, Vosátka M (2003) Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl Soil Ecol 22:283–287. doi: 10.1016/S0929-1393(02)00154-3 CrossRefGoogle Scholar
  41. Gryndler M, Hršelová H, Sudová R, Gryndlerová H, Řezáčová V, Merhautová V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15:483–488. doi: 10.1007/s00572-005-0352-7 CrossRefPubMedGoogle Scholar
  42. Hart MM, Reader RJ (2002) Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF? Mycorrhiza 12:297–301. doi: 10.1007/s00572-002-0186-5 Google Scholar
  43. Hawkins HJ, George E (1997) Hydroponic culture of the mycorrhizal fungus Glomus mosseae with Linum usitatissimum L., Sorghum bicolor L. and Triticum aestivum L. Plant Soil 196:143–149. doi: 10.1023/A:1004271417469 CrossRefGoogle Scholar
  44. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1–32Google Scholar
  45. Hung LLL, Sylvia DM (1988) Production of vesicular–arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol 54:353–357PubMedGoogle Scholar
  46. IJdo M, SchtickzelleN, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114-122. doi: 10.1111/j.1574-6941.2009.00829.x
  47. Jarstfer AG, Sylvia DM (1995) Aeroponic culture of VAM fungi. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Heidelberg, pp 427–441Google Scholar
  48. Jarstfer AG, Sylvia DM (1997) Isolation, culture and detection of arbuscular mycorrhizal fungi. In: Hurst CJ (ed) Manual of environmental microbiology. American Society of Microbiology, Washington, pp 406–412Google Scholar
  49. Jarstfer AG, Farmer-Koppenol SDM, Sylvia DM (1988) Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–342. doi: 10.1007/s005720050186 Google Scholar
  50. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13. doi: 10.1016/j.femsec.2003.11.012 CrossRefPubMedGoogle Scholar
  51. Jolicoeur M (1998) Optimisation d’un procédé de production de champignons endomycorhiziens en bioréacteur. Dissertation, École Polytechnique de MontréalGoogle Scholar
  52. Jolicoeur M, Williams RD, Chavarie C, Fortin JA, Archambault J (1999) Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnol Bioeng 63:224–232CrossRefPubMedGoogle Scholar
  53. Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239. doi: 10.1016/j.scienta.2008.02.002 CrossRefGoogle Scholar
  54. Klironomos JM, Hart NN (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184. doi: 10.1007/s00572-002-0169-6 CrossRefPubMedGoogle Scholar
  55. Koffi MC, de la Providencia IE, Elsen A, Declerck S (2009) Development of an in vitro culture system adapted to banana mycorrhization. Afr J Biotechnol 8:2750–2756Google Scholar
  56. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223CrossRefPubMedGoogle Scholar
  57. Lee YJ, George E (2005) Development of a nutrient film technique culture system for arbuscular mycorrhizal plants. HortScience 40:378–380Google Scholar
  58. Ma N, Yokoyama K, Marumoto T (2007) Effect of peat on mycorrhizal colonization and effectiveness of the arbuscular mycorrhizal fungus Gigaspora margarita. Soil Sci Plant Nutr 53:744–752. doi: 10.1111/j.1747-0765.2007.00204.x CrossRefGoogle Scholar
  59. Medeiros CAB, Clark RB, Ellis JR (1994) Growth and nutrient uptake of sorghum cultivated with vesicular–arbuscular mycorrhiza isolates at varying pH. Mycorrhiza 4:185–191. doi: 10.1007/BF00206778 CrossRefGoogle Scholar
  60. Millner PD, Kitt DG (1992) The Beltsville method for soilless production of vesicular–arbuscular mycorrhizal fungi. Mycorrhiza 2:9–15. doi: 10.1007/BF00206278 CrossRefGoogle Scholar
  61. Mohammad A, Khan AG, Kuek C (2000) Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 9:337–339. doi: 10.1007/s005720050278 CrossRefGoogle Scholar
  62. Mohammad A, Mirta B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249. doi: 10.1016/j.agee.2003.09.017 CrossRefGoogle Scholar
  63. Mosse B (1959) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular–arbuscular mycorrhiza. Trans Br Mycol Soc 42:273–286CrossRefGoogle Scholar
  64. Mosse B (1962) The establishment of vesicular–arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520PubMedGoogle Scholar
  65. Mosse B, Hepper CM (1975) Vesicular-arbuscular infections in root–organ cultures. Physiol Plant Pathol 5:215–233CrossRefGoogle Scholar
  66. Mosse M, Thompson JP (1981) Production of mycorrhizal fungi. US Pat. No 4294037Google Scholar
  67. Mugnier J, Mosse B (1987) Vesicular–arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050CrossRefGoogle Scholar
  68. Mugnier J, Jung G, Prioul J-L (1986) Method of producing endomycorrhizian fungi with arbuscules and vesicles in vitro. US Pat. No 4599312Google Scholar
  69. Neumann E, George E (2005) Extraction of extraradical arbuscular mycorrhizal mycelium from compartments filled with soil and glass beads. Mycorrhiza 15:533–537. doi: 10.1007/s00572-005-0361-6 CrossRefPubMedGoogle Scholar
  70. Plenchette C, Furlan V, Fortin JA (1982) Effects of different endomycorrhizal fungi on 5 host plants grown on calcined montmorillonite clay. J Am Soc Hortic Sci 107:535–538Google Scholar
  71. Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715. doi: 10.1146/annurev.ecolsys.39.110707.173454 CrossRefGoogle Scholar
  72. Saif SR (1983) The influence of soil aeration on the efficiency of vesicular-arbuscular mycorrhizas. II Effect of soil oxygen on growth and mineral uptake in Eupatorium odoratum L., Sorghum bicolor (L.) Moench and Guizotia abyssinica (L.f.) Cass. inoculated with vesicular–arbuscular mycorrhizal fungi. New Phytol 95:405–417CrossRefGoogle Scholar
  73. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. doi: 10.1111/j.1461-0248.2006.009.10.x CrossRefPubMedGoogle Scholar
  74. Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Mol Phylogenet Evol 21:190–197. doi: 10.1006/mpev.2001.1007 CrossRefPubMedGoogle Scholar
  75. Smith SE, Read DJ (eds) (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  76. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332CrossRefGoogle Scholar
  77. Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhizal research, is not Glomus intraradices. New Phytol 183:1176–1187. doi: 10.1111/j.1469-8137.2009.02874.x CrossRefPubMedGoogle Scholar
  78. Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474CrossRefPubMedGoogle Scholar
  79. Struble JE, Skipper HD (1988) Vesicular–arbuscular mycorrhizal fungal spore production as influenced by plant species. Plant Soil 109:277–280CrossRefGoogle Scholar
  80. Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorhizes a vesicules et arbuscules en condition axeniques. C R de Acad Sci 303:245–250Google Scholar
  81. Sylvia DM, Schenck NC (1983) Application of superphosphate to mycorrhizal plants stimulates sporulation of phosphorus-tolerant vesicular–arbuscular mycorrhizal fungi. New Phytol 95:655–661CrossRefGoogle Scholar
  82. Sylvia DM, Jarstfer AG (1992) Sheared roots as a VA-mycorrhizal inoculum and methods for enhancing growth. US Pat. No 5096481Google Scholar
  83. Tajini F, Suriyakup P, Vailhe H, Jansa J, Drevon JJ (2009) Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia. BMC Plant Biol 9:73. doi: 10.1186/1471-2229-9-73 CrossRefPubMedGoogle Scholar
  84. Tiwari P, Adholeya A (2003) Host dependent differential spread of Glomus intraradices on various Ri T-DNA transformed root in vitro. Mycol Prog 2:171–177. doi: 10.1007/s11557-006-0055-2 CrossRefGoogle Scholar
  85. Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118. doi: 10.1016/j.femsle.2005.05.025 CrossRefPubMedGoogle Scholar
  86. Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:347–356. doi: 10.1007/s00572-009-0233-6 CrossRefPubMedGoogle Scholar
  87. Walker C, Vestberg M (1994) A simple and inexpensive method for producing and maintaining closed pot cultures of arbuscular mycorrhizal fungi. Agri Sci Finland 3:233–240Google Scholar
  88. Wang WK (2003) Method of facilitating mass production and sporulation of arbuscular mycorrhizal fungi aseptic. US Pat. No. 6759232Google Scholar
  89. White JA, Charvat I (1999) The mycorrhizal status of an emergent aquatic, Lythrum salicaria L., at different levels of phosphorus availability. Mycorrhiza 9:191–197. doi: 10.1007/s005720050266 CrossRefGoogle Scholar
  90. Wu CG, Liu YS, Hung LL (1995) Spore development of Entrophospora kentinensis in an aeroponic system. Mycologia 87:582–587CrossRefGoogle Scholar
  91. Zobel RW, Del Tredici P, Torrey JG (1976) Method for growing plants aeroponically. Plant Physiol 57:344–346CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marleen IJdo
    • 1
  • Sylvie Cranenbrouck
    • 2
  • Stéphane Declerck
    • 1
    • 3
  1. 1.Earth and Life Institute, MycologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Earth and Life Institute, MycologyUniversité catholique de Louvain, Mycothèque de l’Université Catholique de Louvain (MUCL)Louvain-la-NeuveBelgium
  3. 3.Earth and Life Institute, MycologyUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations