Mycorrhiza

, Volume 20, Issue 8, pp 519–530 | Cite as

Agroecology: the key role of arbuscular mycorrhizas in ecosystem services

  • Silvio Gianinazzi
  • Armelle Gollotte
  • Marie-Noëlle Binet
  • Diederik van Tuinen
  • Dirk Redecker
  • Daniel Wipf
Review

Abstract

The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the ‘first green revolution’, less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society’s balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society.

Keywords

Arbuscular mycorrhiza Ecosystem services Agroecology Ecosystem sustainability 

References

  1. Akkopru A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550CrossRefGoogle Scholar
  2. Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press, BoulderGoogle Scholar
  3. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  4. An ZQ, Hendrix JW, Hershman DE, Ferriss RS, Henson GT (1993) The influence of crop-rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza 3:171–182CrossRefGoogle Scholar
  5. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:86–96Google Scholar
  6. Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258PubMedCrossRefGoogle Scholar
  7. Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285CrossRefGoogle Scholar
  8. Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496CrossRefGoogle Scholar
  9. Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288CrossRefGoogle Scholar
  10. Bødker L, Kjøller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12PubMedCrossRefGoogle Scholar
  11. Bouamri R, Dalpé Y, Serrhini MN, Bennani A (2006) Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. in Morocco. Afr J Biotechnol 5:510–516Google Scholar
  12. Boyd J, Banzhaf S (2007) What are ecosystems services? Ecol Econ 63:616–626CrossRefGoogle Scholar
  13. Caravaca F, Alguacil MM, Azcòn R, Roldán A (2006) Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: effect of am fungi and organic amendments. Appl Soil Ecol 33:30–38CrossRefGoogle Scholar
  14. Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325CrossRefGoogle Scholar
  15. Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: Exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650CrossRefGoogle Scholar
  16. Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225CrossRefGoogle Scholar
  17. Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181CrossRefGoogle Scholar
  18. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494PubMedCrossRefGoogle Scholar
  19. Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phythophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232CrossRefGoogle Scholar
  20. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  21. Croll D, Sanders IR (2009) Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evol Biol 9:13PubMedCrossRefGoogle Scholar
  22. Cummings JA, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19:215–240CrossRefGoogle Scholar
  23. Daily GC (1997) Nature’s services. Societal dependence on natural ecosystems. Islands Press, WashingtonGoogle Scholar
  24. Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431CrossRefGoogle Scholar
  25. Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204PubMedCrossRefGoogle Scholar
  26. Engindeniz S (2006) Economic analysis of pesticide use on processing tomato growing: a case study for Turkey. Crop Prot 25:534–541CrossRefGoogle Scholar
  27. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedCrossRefGoogle Scholar
  28. Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609CrossRefGoogle Scholar
  29. Fisher B, Turner RK (2008) Ecosystem services: classification for valuation. Biol Conserv 141:1167–1169CrossRefGoogle Scholar
  30. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMedCrossRefGoogle Scholar
  31. Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514PubMedCrossRefGoogle Scholar
  32. Gensel PG (2008) The earliest land plants. Ann Rev Ecol Evol Syst 39:459–477CrossRefGoogle Scholar
  33. Gianinazzi S, Gianinazzi-Pearson V (1988) Mycorrhizae: a plant’s health insurance. Chim Oggi 10:56–68Google Scholar
  34. Gianinazzi S, Trouvelot A, Gianinazzi-Pearson V (1989) Conceptual approaches for the rational use of VA endomycorrhizae in agriculture: possibilities and limitations. Agric Ecosyst Environ 29:153–161CrossRefGoogle Scholar
  35. Gianinazzi S, Huchette O, Gianinazzi-Pearson V (2008) New outlooks in mycorrhiza applications. In: Baar J, Estaun V, Ortas I, Orfanoudakis M, Alifragis D (eds) Proceedings of the COST870 meeting “Mycorrhiza application in sustainable agriculture and natural systems”, 17–19 September 2008, Thessaloniki, Greece. pp 20–22Google Scholar
  36. Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715CrossRefGoogle Scholar
  37. Görlach B, Landgrebe-Trinkunaite R, Interwies E, Bouzit M, Darmendrail D, Rinaudo JD (2004) Assessing the ecomic impacts of soil degradation. In: Volume IV: Executive Summary Study commissioned by the European Commission, DG Environment, Study Contract ENVB1/ETU/2003/0024, BerlinGoogle Scholar
  38. Hao Z, Fayolle L, van Tuinen D, Gianinazzi-Pearson V, Gianinazzi S (2009) Mycorrhiza reduce development of nematode vector og Grapevine fanleaf virus in soils and root systems. In: Boudon-Padfieu E (ed) Extended abstract 16th meeting of ICVG, Dijon, France. pp 100–1001Google Scholar
  39. Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157PubMedCrossRefGoogle Scholar
  40. Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene tgranscripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643–654Google Scholar
  41. Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20CrossRefGoogle Scholar
  42. Hart MM, Trevors JT (2005) Microbe management: application of mycorrhizal fungi in sustainable agriculture. Front Ecol Environ 3:533–539CrossRefGoogle Scholar
  43. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431PubMedCrossRefGoogle Scholar
  44. Herring JR, Fantel RJ (1993) Phosphate rock demand into the next century: impact on world food supply. Nat Resour Search 2:226–246Google Scholar
  45. Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors—a synthesis. Can J Bot 71:512–518Google Scholar
  46. Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289PubMedCrossRefGoogle Scholar
  47. Hildermann I, Messmer M, Dubois D, Boller T, Wiemken A, Mäder P (2010) Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. J Sci Food Agri. doi:10.1002/jsfa.4048
  48. Hooper L, Cassidy A (2006) A review of the health care potential of bioactive compounds. J Sci Food Agric 86:1805–1813CrossRefGoogle Scholar
  49. IAASTD (2008) Agriculture and development. International Assessment of Agricultural Science and Technology for Development, BrusselsGoogle Scholar
  50. Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza. Springer-Verlag, Berlin, pp 297–324Google Scholar
  51. Jeffries P, Gianinazzi S, Peretto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16Google Scholar
  52. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515CrossRefGoogle Scholar
  53. Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463CrossRefGoogle Scholar
  54. Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342CrossRefGoogle Scholar
  55. Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311PubMedCrossRefGoogle Scholar
  56. Khade SW, Adholeyavan A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils. Water Air Soil Pollut 202:45–56CrossRefGoogle Scholar
  57. Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446PubMedCrossRefGoogle Scholar
  58. Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc R Soc Lond B Biol Sci 274:3119–3126CrossRefGoogle Scholar
  59. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355PubMedCrossRefGoogle Scholar
  60. Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hortic 106:554–567CrossRefGoogle Scholar
  61. Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Security 1:45–57CrossRefGoogle Scholar
  62. Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Network of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045CrossRefGoogle Scholar
  63. Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocinum basilicum L.) leaves. Food Chem 115:650–656CrossRefGoogle Scholar
  64. López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385CrossRefGoogle Scholar
  65. Lugon-Moulin N, Ryan L, Donini P, Rossi L (2006) Cadmium content of phosphate fertilizers used for tobacco production. Agron Sust Dev 26:151–155CrossRefGoogle Scholar
  66. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102Google Scholar
  67. Martinez-Medina A, Pascual JA, Lloret E, Roldan A (2009) Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. J Sci Food Agric 89:1843–1850CrossRefGoogle Scholar
  68. Marulanda A, Barea JM (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124CrossRefGoogle Scholar
  69. Marulanda A, Barea JM, Azcon R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678PubMedCrossRefGoogle Scholar
  70. Marulanda-Aguirre A, Azcon R, Ruiz-Lozano JM, Aroca R (2008) Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J Plant Growth Regul 27:10–18CrossRefGoogle Scholar
  71. Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251CrossRefGoogle Scholar
  72. Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364CrossRefGoogle Scholar
  73. Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000CrossRefGoogle Scholar
  74. Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in european countries. Sci Total Environ 390:53–57PubMedCrossRefGoogle Scholar
  75. Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824PubMedCrossRefGoogle Scholar
  76. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283PubMedCrossRefGoogle Scholar
  77. Pagiola S (2007) Payments for environmental services in Costa Rica. Ecol Econ 65:712–724CrossRefGoogle Scholar
  78. Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545PubMedCrossRefGoogle Scholar
  79. Pimm LS (1997) The value of everything. Nature 387:231–232CrossRefGoogle Scholar
  80. Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359PubMedCrossRefGoogle Scholar
  81. Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi in defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534PubMedCrossRefGoogle Scholar
  82. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  83. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedCrossRefGoogle Scholar
  84. Rillig MC, Mummey D (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  85. Rillig MC, Wright SF, Nichols KA, Schmid WF, Torn MS (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  86. Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185PubMedCrossRefGoogle Scholar
  87. Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity is a grand challenge for agriculture. The Ecological Society of America 3:39–46Google Scholar
  88. Roose T, Fowler AC (2004) A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol 228:173–184PubMedCrossRefGoogle Scholar
  89. Roth-Nebelsick A, Konrad W (2003) Assimilation and transpiration capabilities of rhyniophytic plants from the Lower Devonian and their implications for paleoatmospheric CO2 concentration. Palaeogeogr Palaeoclimatol Palaeoecol 202:153–178CrossRefGoogle Scholar
  90. Sailo GL, Bagyaraj DJ (2005) Influence of different AM fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798PubMedCrossRefGoogle Scholar
  91. Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochem 69:112–146CrossRefGoogle Scholar
  92. Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  93. Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629PubMedCrossRefGoogle Scholar
  94. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  95. Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358PubMedCrossRefGoogle Scholar
  96. Stan SD, Kar S, Stoner GD, Singh SV (2008) Bioactive food components and cancer risk reduction. J Cell Biochem 104:339–356PubMedCrossRefGoogle Scholar
  97. Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34PubMedCrossRefGoogle Scholar
  98. Talavera M, Itou K, Mizukubo T (2001) Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Entomol Zool 36:387–392CrossRefGoogle Scholar
  99. Thygesen K, Larsen J, Bødker L (2004) Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. Eur J Plant Pathol 110:411–419CrossRefGoogle Scholar
  100. Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250CrossRefGoogle Scholar
  101. Torres-Barragan A, Zavaleta-Mejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza 6:253–257CrossRefGoogle Scholar
  102. Toth R, Toth D, Starke D, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68:1039–1044CrossRefGoogle Scholar
  103. Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297PubMedCrossRefGoogle Scholar
  104. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya codii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190PubMedCrossRefGoogle Scholar
  105. Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol 51:393–400CrossRefGoogle Scholar
  106. Wallace KJ (2007) Classification of ecosystem services: problems and solutions. Biol Conserv 139:235–246CrossRefGoogle Scholar
  107. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  108. Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461PubMedCrossRefGoogle Scholar
  109. Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Silvio Gianinazzi
    • 1
  • Armelle Gollotte
    • 2
    • 4
  • Marie-Noëlle Binet
    • 1
  • Diederik van Tuinen
    • 1
  • Dirk Redecker
    • 3
  • Daniel Wipf
    • 1
  1. 1.UMR INRA 1088/CNRS 5184/Université Bourgogne, Plante-Microbe-Environnement, INRA-CMSEDijon CedexFrance
  2. 2.Welience Agro-Environnement, INRADijon CedexFrance
  3. 3.UMR INRA 1229/Université Bourgogne, Microbiologie du Sol et de l’Environnement, INRA-CMSEDijon CedexFrance
  4. 4.InoplantAisereyFrance

Personalised recommendations