, Volume 20, Issue 2, pp 127–135

The promoting role of an isolate of dark-septate fungus on its host plant Saussurea involucrata Kar. et Kir.

  • Li-qin Wu
  • Ya-li Lv
  • Zhi-xia Meng
  • Juan Chen
  • Shun-Xing Guo
Original Paper


A dark-septate endophytic (DSE) fungus EF-37 was isolated from the roots of Saussurea involucrata Kar. et Kir., an endangered Chinese medicinal plant. The molecular identification of the fungus was based on internal transcribed spacer regions and the result showed that EF-37 was congeneric to Mycocentrospora. This study was conducted to clarify the influence of the root endophyte EF-37 on the host plant S. involucrata using material grown in a sterile culture bottle. After cultivation for 40 days, fungal hyphae were found to be branching repeatedly and forming “hyphae nets” in the epidermal layers. Significant differences were detected between the study groups in plant dry weight, plant height, root dry weight, shoot dry weight, and the number of hair root tips. There was a positive effect of endophyte EF-37 on plant root development, with results showing that cortical cells dissolved and formed aerate structures. There was a positive effect of endophyte EF-37 on plant growth, but chlorophyll fluorescence analysis showed that there were no significant differences between the study groups. In addition, analysis of the chemical composition of seedlings showed that the level of rutin was higher in plants cultivated with the EF-37 fungus compared to the controls. This study helps to establish a basis for germplasm conservation and for further investigation of the interaction between dark-septate fungi and this alpine plant.


Dark-septate endophytic (DSE) fungus Saussurea involucrata Molecular identification Microscope observation Chlorophyll fluorescence analysis HPLC analysis 


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 CrossRefPubMedGoogle Scholar
  2. Avdiushko SA (1993) Detection of several enzymatic activities in leaf prints cucumber plant. Physiol Mol Plant Pathol 42:441–454. doi:10.1006/pmpp.1993.1033 CrossRefGoogle Scholar
  3. Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ 44:123–142. doi:10.1016/0167-8809(93)90042-N CrossRefGoogle Scholar
  4. Beaudoin-Eagan LD (1985) Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol 78:438–441. doi:10.1104/pp.78.3.438 CrossRefPubMedGoogle Scholar
  5. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304. doi:10.1046/j.1469-8137.2002.00397.x CrossRefGoogle Scholar
  6. Cousin MA (1996) Chitin as a measure of mold contamination of agricultural commodities and foods. J Food Prot 59:73–81Google Scholar
  7. Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23CrossRefGoogle Scholar
  8. Demming B, Winter K (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84:218–224. doi:10.1104/pp.84.2.218 CrossRefGoogle Scholar
  9. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142. doi:10.2307/2440500 CrossRefGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678 CrossRefGoogle Scholar
  11. Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (fungi imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078. doi:10.1139/b96-131 CrossRefGoogle Scholar
  12. Fu LG (1992) China plant red data book—rare and endangered plants, vol 1. Chinese Science Press, Beijing, pp 234–235Google Scholar
  13. Fu CX, Xu YJ, Zhao DX, Ma FS (2005) A comparison between hairy root cultures and wild plants of Saussurea involucrata in phenylpropanoids production. Plant Cell Rep 24:750–754. doi:10.1007/s00299-005-0049-6 CrossRefPubMedGoogle Scholar
  14. Fumiaki U, Kazuhiko N (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184. doi:10.3852/mycologia.99.2.175 CrossRefGoogle Scholar
  15. Guo SX, Xu JT (1990a) Studies on the cell ultrastructure in the course of gastrodia elata digesting Mycena osmundicola Lange and Armillaria mellea FR. Mycosystema 3:218–225Google Scholar
  16. Guo SX, Xu JT (1990b) Studies on the changes of cell ultrastructure in the course of seed germination of Bletilla striata under fungus infection conditions. Zhíwùxué Bào 8:594–598Google Scholar
  17. Guo B, Gao M, Liu CZ (2007) In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir. Plant Cell Rep 26:261–265. doi:10.1007/s00299-006-0230-6 CrossRefPubMedGoogle Scholar
  18. Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of pathogenic fungi. Annu Rev Phytopathol 37:447–471. doi:10.1146/annurev.phyto.37.1.447 CrossRefPubMedGoogle Scholar
  19. Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42:357–364. doi:10.1023/B:PHOT.0000046153.08935.4c CrossRefGoogle Scholar
  20. Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211. doi:10.1007/s005720100112 CrossRefGoogle Scholar
  21. Jumpponen A, Trappe JM (1998a) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310. doi:10.1046/j.1469-8137.1998.00265.x CrossRefGoogle Scholar
  22. Jumpponen A, Trappe JM (1998b) Dark-septate root endophytes: a review with special reference to facultative biotrophic symbiosis. New Phytol 140:295–310. doi:10.1046/j.1469-8137.1998.00265.x CrossRefGoogle Scholar
  23. Jumpponen A, Mattson KG, Trappe JM (1998) Mycorrhizal functioning of Phialocephala fortinii: interactions with soil nitrogen and organic matter. Mycorrhiza 7:261–265. doi:10.1007/s005720050190 CrossRefGoogle Scholar
  24. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  25. Larson KC, Whitham TG (1991) Manipulation of food resourses by a gall-forming aphid: the physiology of sink-source interactions. Oecologia 88:15–21. doi:10.1007/BF00328398 CrossRefGoogle Scholar
  26. Li GH, Zhao RC (1989) Studies on pharmacological actions of Saussurea involucrata Kar. et Kir. Acta Pharmacol Sin 15:368–369Google Scholar
  27. Li JS, Cai SQ (1998) Chemical constituents and pharmacological activity of eight species herb Xuelianhua. Chin Pharmaceut J 33:449–457Google Scholar
  28. Li Y, Wang CL, Guo SX, Yang JS, Xiao PG (2007) Three guaianolides from Saussurea involucrata and their contents determination by HPLC. J Pharm Biomed Anal 44:288–292. doi:10.1016/j.jpba.2007.02.017 CrossRefPubMedGoogle Scholar
  29. Liu LS, Xiao XH, Zhang LD (1985) Effect of the flavonoids from Saussurea involucrata on DNA synthesis of cancer cells. J Lanzhou Univ Nat Sci 21:80–83Google Scholar
  30. LoBuglio KF, Berbee ML, Taylor JW (1996) Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum FR. and other mycorrhizal fungi among the ascomycetes. Mol Phylogenet Evol 6:287–294. doi:10.1006/mpev.1996.0077 CrossRefPubMedGoogle Scholar
  31. Mada RJ, Bagyaraj DJ (1993) Root exudation from Leucaena leucocephala in relation to mycorrhizal colonization. World J Microbiol Biotechnol 9:342–344. doi:10.1007/BF00383076 CrossRefGoogle Scholar
  32. Marks S, Clay K (1996) Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol 133:727–733. doi:10.1111/j.1469-8137.1996.tb01941.x CrossRefGoogle Scholar
  33. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668CrossRefPubMedGoogle Scholar
  34. Money NP, The-Can Caesar-TonThat P, Frederick B, Henson JM (1998) Melanin synthesis is associated with changes in hyphopodial turgor, permeability, and wall rigidity in Gaeumannomyces graminis var. graminis. Fungal Genet Biol 24:240–251. doi:10.1006/fgbi.1998.1052 CrossRefPubMedGoogle Scholar
  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  36. Page RDM (1996) An application to display phylogenetic tree personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  37. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197Google Scholar
  38. Read DJ, Haselwandter K (1981) Observation on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352. doi:10.1111/j.1469-8137.1981.tb01729.x CrossRefGoogle Scholar
  39. Schulz B, Ak R, Dammann U, Aust HJ, Strack D (1999) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716Google Scholar
  40. Shivanna MB, Meera MS, Hyakumachi M (1994) Sterile fungi from zoysiagrass rhizospere as plant growth promoters in spring wheat. Can J Microbiol 40:637–644CrossRefGoogle Scholar
  41. Swofford DL (1998) PAUP*4.0. Phylogenetic analysis using parsimony. Sinauer Associates, SunderlandGoogle Scholar
  42. Tan RX, Lu H, Wolfender JL, Yu TT, Zheng WF, Yang L, Gafner S, Hostettmann K (1999) Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Med 65:64–67. doi:10.1055/s-1999-13965 CrossRefPubMedGoogle Scholar
  43. Tan XM, Guo SX, Zhou YQ, Miu JH (2006) Microstructure and endophytic fungus distribution of Maytenus confertiflorus root. Chin Bull Bot 4:368–373Google Scholar
  44. White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic, New York, pp 315–322Google Scholar
  45. Wilcox HE, Wang CJK (1987) Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can J For Res 17:884–889. doi:10.1139/x87-140 CrossRefGoogle Scholar
  46. Woerdenbag HJ, Merfort I, Passreiter CM, Schmidt TJ, Willuhn G, Van Uden W, Pras N, Kampinga HH, Konings AWT (1994) Cytotoxicity of flavonoids and sesquiterpene lactones from Arnica species against the GLC4 and the COLO 320 cell lines. Planta Med 60:434–437. doi:10.1055/s-2006-959526 CrossRefPubMedGoogle Scholar
  47. Wu LQ, Guo SX (2008) Interaction between an isolate of dark-septate fungi and its host plant Saussurea involucrata. Mycorrhiza 18:79–85. doi:10.1007/s00572-007-0159-9 CrossRefPubMedGoogle Scholar
  48. Zhang JH, Wang CL, Guo SX, Chen JM, Xiao PG (1999) Studies on the plant hormones produced by 5 species of endophytic fungi isolated from medicinal plants (Orchidacea). Acta Academiae Medicinae Sinicae 21:460–465PubMedGoogle Scholar
  49. Zhao DX, Qiao CL, Wang Y (1998) Cell culture and selection of high flavonoids-producing cell lines in Saussurea medusa. Acta Bot Sin 40:515–520Google Scholar
  50. Zhao DX, Huang Y, Jin Z, Qu W, Lu D (2003) Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production. Plant Cell Rep 21:1129–1133. doi:10.1007/s00299-003-0631-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Li-qin Wu
    • 1
  • Ya-li Lv
    • 1
  • Zhi-xia Meng
    • 1
  • Juan Chen
    • 1
  • Shun-Xing Guo
    • 1
  1. 1.Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China

Personalised recommendations