Advertisement

Mycorrhiza

, Volume 19, Issue 7, pp 493–500 | Cite as

Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts?

  • François Rineau
  • Jean Garbaye
Original Paper

Abstract

Liming (Ca–Mg soil amendment) is a forestry practice used to correct soil acidification and restore health and productivity in declining stands. Liming is known to modify tree mineral nutrition beyond the sole Ca and Mg. We hypothesized that liming also modifies the very functioning of the tree absorbing system (that is the ectomycorrhizal fine roots) in a way that facilitates the mobilization of mineral nutrients, particularly those entrapped in soil organic matter. This hypothesis has been tested here in beech and Norway spruce stands in North-Eastern France. In autumn, we compared the ectomycorrhizal community structure and the enzymatic profiles of ectomycorrhizal root tips in limed and untreated plots by measuring the activities of eight enzymes related to the degradation of soil organic matter. The results show that the ectomycorrhizal community responds to the Ca–Mg amendment and to the resulting soil modifications by modified enzyme activity profiles and ability to mobilize nutrients from soil organic matter. The effects of liming on the belowground functioning of the tree stands result essentially from specialized ECM fungal species such as Clavulina cristata (with strong glucuronidase activity), Lactarius subdulcis (with strong laccase activity) or Xerocomus pruinatus (with strong leucine aminopeptidase activity).

Keywords

Ca–Mg soil amendment Ectomycorrhizal community Secreted enzymatic activities Nutrient mobilization Functional specialization 

Notes

Acknowledgments

We thank Dr. C. Nys for providing the experimental site of Humont and for his expertise about liming, and the Office National des Forêts for allowing us to sample roots in the experimental plots. The PhD scholarship of the first author was partly supported by the Lorraine Region. Part of this work has been funded by the Agence Nationale de la Recherche (FUNDIV project ANR-06-BDIV-006-01). The authors are also grateful to two anonymous reviewers for their very helpful comments.

References

  1. Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilisation of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493. doi: 10.1111/j.1469-8137.1986.tb02886.x CrossRefGoogle Scholar
  2. Agerer R, (1987-1998) Colour atlas of ectomycorrhizae. Einhorn Eduard Dietenberger, MunichGoogle Scholar
  3. Agerer R (2001) Exploration types of ectomycorhizae. Mycorrhiza 11:107–114. doi: 10.1007/s005720100108 CrossRefGoogle Scholar
  4. Antibus RK, Sinsabaugh RL, Linkins AE (1992) Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can J Bot 70:794–801CrossRefGoogle Scholar
  5. Blaise T, Garbaye J (1983) Effets de la fertilisation minérale sur les ectomycorhizes d'une hêtraie. Oecol Plant 18:165–169Google Scholar
  6. Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245CrossRefPubMedGoogle Scholar
  7. Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116CrossRefPubMedGoogle Scholar
  8. Burns RG (1978) Enzyme activity in soil: some theoretical and practical considerations. In: Burns RG (ed) Soil enzymes. Academic, New YorkGoogle Scholar
  9. Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9:125–135. doi: 10.1007/s005720050297 CrossRefGoogle Scholar
  10. Colpaert JV, van Laere A (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytol 134:133–141. doi: 10.1111/j.1469-8137.1996.tb01153.x CrossRefGoogle Scholar
  11. Condron LM, Tiessen H, Trasar-Cepeda C, Moir JO, Stewart JWB (1992) Effects of liming on organic matter decomposition and phosphorus extractability in an acid humic Ranker soil from northwest Spain. Biol Fertil Soils 15:279–284. doi: 10.1007/BF00337213 CrossRefGoogle Scholar
  12. Courty PE, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663. doi: 10.1016/j.soilbio.2007.01.017 CrossRefGoogle Scholar
  13. Courty PE, Franc A, Pierrat JC, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons in a temperate oak forest. Appl Environ Microbiol 74:5792–5801. doi: 10.1128/AEM.01592-08 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319. doi: 10.1111/j.1469-8137.2005.01401.x CrossRefPubMedGoogle Scholar
  15. Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U (2009) Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol . doi: 10.1111/j.1469-8137.2009.02774.x
  16. Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. The Mycota III : biochemistry and molecular biology. Springer, BerlinGoogle Scholar
  17. Duchaufour Ph, Bonneau M (1959) Une méthode nouvelle de dosage du phosphore assimilable dans les sols forestiers. Bulletin de l’Association Française pour l’Etude du Sol 4 (193-198Google Scholar
  18. Erland S, Taylor AFS (2002) Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. Ecological studies. In: van der Heijden MGA, Sanders IR (eds) Vol 157, Mycorrhizal ecology. Springer, BerlinGoogle Scholar
  19. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328. doi: 10.1111/j.1469-8137.2004.01212.x CrossRefPubMedGoogle Scholar
  20. Garbaye J (1990) Pourquoi et comment observer l'état mycorhizien des plants forestiers. Rev Forestiere Fr XLII:35–47.CrossRefGoogle Scholar
  21. Gardes M, Bruns TD (1993) ITS primers which enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  22. Huber C, Weiss W, Gottlein A (2006) Tree nutrition of Norway spruce as modified by liming and experimental acidification at the Höglwald site, Germany, from 1982 to 2004. Plant Soil 63:861–869Google Scholar
  23. Hüttl RF (1989) Liming and fertilization as mitigating tools in declining forests ecosystems. Water Air Soil Pollut 44:93–118. doi: 10.1007/BF00228781 CrossRefGoogle Scholar
  24. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Statist 5:299–314. doi: 10.2307/1390807 Google Scholar
  25. Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168:447–470. doi: 10.1007/BF00029358 CrossRefGoogle Scholar
  26. Landeweert R, Hoffland E, Finlay R, Kuyper T, van Breemen N (2001) Linking plants to rocks. Ectomycorrhizal fungi mobilizes nutrients from minerals. Trends Ecol Evol 16:248–254. doi: 10.1016/S0169-5347(01)02122-X CrossRefPubMedGoogle Scholar
  27. Leake JR, Read DJ (1990) Proteinase activity in mycorrhizal fungi II. The effects of mineral and organic nitrogen sources on induction of extracellular proteinase in Hymenoscyphus ericae (Read) Korf & Kernan. New Phytol 116:123–128. doi: 10.1111/j.1469-8137.1990.tb00517.x CrossRefGoogle Scholar
  28. Maijala R, Raudaskoski M, Viikari L (1995) Hemicellulolytic enzymes in p-strains and s-strains of Heterobasidion annosum. Microbiol-UK 141:743–750CrossRefGoogle Scholar
  29. Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel N, Oudot-Le MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila G, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) Symbiosis insights from the genome of the mycorrhizal Basidiomycete Laccaria bicolor. Nature 452:88–92. doi: 10.1038/nature06556 CrossRefPubMedGoogle Scholar
  30. Mosca E, Montecchio L, Scattolin L, Garbaye J (2007) Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biol Biochem 39:2897–2904. doi: 10.1016/j.soilbio.2007.05.033 CrossRefGoogle Scholar
  31. Nowotny I, Dähne J, Klingelhöfer D, Rothe GM (1998) Effect of artificial soil acidification and liming on growth and nutrient status of mycorrhizal roots of Norway spruce (Picea abies [L.])Karst.). Plant Soil 199:29–40. doi: 10.1023/A:1004265511068 CrossRefGoogle Scholar
  32. Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J Microbiol Methods 58:233–241. doi: 10.1016/j.mimet.2004.04.001 CrossRefPubMedGoogle Scholar
  33. Qian XM, Kottke I, Oberwinkler F (1998) Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.). Karst. Stand. Plant Soil 199:99–109CrossRefGoogle Scholar
  34. Reid ID (1995) Biodegradation of lignin. Can J Bot 73:1011–1018. doi: 10.1139/b95-351 CrossRefGoogle Scholar
  35. Rineau F, Garbaye J (2009) Liming modifies ECM community structure: effects of soil horizon and tree host. Fungal Ecol (in press)Google Scholar
  36. Rineau F, Courty PE, Uroz S, Buée M, Garbaye J (2008) Simple microplate assays to measure iron mobilization and oxalate secretion by ectomycorrhizal tree roots. Soil Biol Biochem 40:2460–2463. doi: 10.1016/j.soilbio.2008.03.012 CrossRefGoogle Scholar
  37. Rosenberg W, Nierop KGJ, Knicker H, de Jager PA, Kreutzer K, Weiss T (2003) Liming effects on the chemical composition of the organic surface layer of a mature Norway spruce stand (Picea abies [L.] Karst.). Soil Biol Biochem 35:155–165. doi: 10.1016/S0038-0717(02)00250-X CrossRefGoogle Scholar
  38. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, Ed 3rd edn. Academic, LondonGoogle Scholar
  39. Tibett M, Sanders FE, Cairney JWG (1998) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102:129–133. doi: 10.1017/S0953756297004681 CrossRefGoogle Scholar
  40. Ulrich B, Mayer R, Khanna PK (1979) Die Deposition von Luftverunreinigungen und ihre Auswirkungen in Waldökosystemem im Solling. Schr Forstl Fa Univ Gottingen 58:1–291Google Scholar
  41. Vepsäläinen M, Kukkonen S, Vestberg M, Sirviö NRM (2001) Application of soil enzyme activity test kit in a field experiment. Soil Biol Biochem 33:1665–1672. doi: 10.1016/S0038-0717(01)00087-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.INRA NancyLaboratoire Interactions Arbres-MicroorganismesChampenouxFrance

Personalised recommendations