Mycorrhiza

, Volume 19, Issue 6, pp 425–434

Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings

  • Shu-Lan Bai
  • Guo-Lei Li
  • Yong Liu
  • R. Kasten Dumroese
  • Rui-Heng Lv
Original Paper

Abstract

Reforestation in China is important for reversing anthropogenic activities that degrade the environment. Pinus tabulaeformis is desired for these activities, but survival and growth of seedlings can be hampered by lack of ectomycorrhizae. When outplanted in association with Ostryopsis davidiana plants on reforestation sites, P. tabulaeformis seedlings become mycorrhizal and survival and growth are enhanced; without O. davidiana, pines often remain without mycorrhizae and performance is poorer. To better understand this relationship, we initiated an experiment using rhizoboxes that restricted root and tested the hypothesis that O. davidiana seedlings facilitated ectomycorrhizae formation on P. tabulaeformis seedlings through hyphal contact. We found that without O. davidiana seedlings, inocula of five indigenous ectomycorrhizal fungi were unable to grow and associate with P. tabulaeformis seedlings. Inocula placed alongside O. davidiana seedlings, however, resulted in enhanced growth and nutritional status of O. davidiana and P. tabulaeformis seedlings, and also altered rhizosphere pH and phosphatase activity. We speculate that these species form a common mycorrhizal network and this association enhances outplanting performance of P. tabulaeformis seedlings used for forest restoration.

Keywords

Reforestation Common mycorrhizal networks Phosphatase Mycorrhizal infection facilitation Rhizobox 

References

  1. Bai SL, Bai YE, Fang L, Liu Y (2004) Mycorrhiza of Cenococcum geophilum formed on Ostryopsis davidiana and mycorrhizal affection on the growth of Ostryopsis davidiana. Scientia Silvae Sinicae 40:194–196, in ChineseGoogle Scholar
  2. Bai SL, Liu Y, Zhou J, Dong Z, Fan R (2006) Resources investigation and ecological study on ectomycorrhizal fungi in Daqingshan Mountains, Inner Mongolia. Acta Ecol Sin 26:837–841, in ChineseGoogle Scholar
  3. Boyle CD, Hellenbrand KE (1990) Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can J Bot 69:1764–1771. doi:10.1139/b91-224 CrossRefGoogle Scholar
  4. Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443. doi:10.1007/BF02182684 CrossRefGoogle Scholar
  5. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Canberra: ACIAR Monograph. pp 120–290Google Scholar
  6. Burdett AN (1990) Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can J Res 20:415–427. doi:10.1139/x90-059 CrossRefGoogle Scholar
  7. Cui XY (1998) Modern experimental analysis technology for forestry soil. Northeast Forestry University Press, Harbin, pp 73–99Google Scholar
  8. Cullings KW, Vogler DR, Parker VT, Finley SK (2000) Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Appl Environ Microb 66:4988–4991. doi:0099-2240/00/$04.0010 CrossRefGoogle Scholar
  9. Dickie IA, Oleksyn J, Reich PB, Karolewski P, Zytkowiak R, Jagodzinski AM, Turzanska E (2006) Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. Mycorrhiza 16:73–79. doi:10.1007/s00572-005-0013-x PubMedCrossRefGoogle Scholar
  10. Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94Google Scholar
  11. Fries N, Bardet M, Serck-Hanssen K (1985) Growth of ectomycorrhizal fungi stimulated by lipids from a pine root exudate. Plant Soil 86:287–290. doi:10.1007/BF02182906 CrossRefGoogle Scholar
  12. Fu L, Nan L, Mill RR (1999) Pinaceae, vol 4. In: Wu Z-Y, Raven PH et al (eds) Flora of China. Missouri Botanical Garden Press, St. Louis, pp 11–52Google Scholar
  13. Gerlitz TGB, Werk WB (1994) Investigations on phosphate uptake and polyphosphate metabolism by mycorrhized and non-mycorrhized roots of beech and pine as investigated by in vivo 31P-NMR. Mycorrhiza 4:207–214. doi:10.1007/BF00206782 CrossRefGoogle Scholar
  14. Gong MQ, Chen YL, Zhong CL (1997) Mycorrhizal research and application. China Forestry Press, Beijing, pp 17–32Google Scholar
  15. Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294. doi:10.1007/s11056-004-8303-2 Google Scholar
  16. Guan SY (1986) Soil enzyme and its research method. Beijing Agric Press, Beijing, pp 1–376Google Scholar
  17. Han XL, Fang L, Zhou J, Bai SL (2005) The search, synthesizing, and screening out of outstanding Ostryopsis davidiana ectomycorrhiza. Acta Agric Boreali-Sinica 20:101–104, in ChineseGoogle Scholar
  18. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, Cambridge, pp 1–99Google Scholar
  19. He X-H, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567. doi:10.1080/07352680390253520 CrossRefGoogle Scholar
  20. He X-H, Bledsoe CS, Zasoski RJ, Southworth D, Horwath WR (2006) Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol 170:143–151. doi:10.1111/j.1469-8137.2006.01648.x PubMedCrossRefGoogle Scholar
  21. Hua XM (1995) Introduction to mycorrhiza. In: Hua M (ed) Studies on mycorrhiza of forest trees. Chinese Sci Tech Press, Beijing, pp 1–20Google Scholar
  22. Hubert NA, Gehring CA (2008) Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza 18:363–374. doi:10.1007/s00572-008-0185-2 PubMedCrossRefGoogle Scholar
  23. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91. doi:10.1007/s00572-006-0094-1 PubMedCrossRefGoogle Scholar
  24. Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080. doi:10.1046/j.1365-2745.2003.00829.x CrossRefGoogle Scholar
  25. Landis TD, Tinus RW, McDonald SE, Barnett JP (1989) Seedling nutrition and irrigation. The Container Tree Nursery Manual, Volume 4. US Dept Agric, Washington DC, Agric Handbk 674Google Scholar
  26. Li P-C, Skvortsov AK (1999) Betulaceae, vol 4. In: Wu Z-Y, Raven PH et al (eds) Flora of China. Science Press, Beijing, pp 286–313Google Scholar
  27. Li W (2004) Degradation and restoration of forest ecosystems in China. For Ecol Manage 201:33–41. doi:10.1016/j.foreco.2004.06.010 CrossRefGoogle Scholar
  28. Liu RJ, Li XL (2000) Arbuscular Mycorrhizae and application. Science Press, BeijingGoogle Scholar
  29. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  30. Mao XL (1998) Economic fungi in China (in Chinese). Science Press, BeijingGoogle Scholar
  31. Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific northwest conifers and fungi. For Sci 28:423–458Google Scholar
  32. Nambiar EKS, Sands R (1993) Competition for water and nutrients in forests. Can J Res 23:1955–1968. doi:10.1139/x93-247 CrossRefGoogle Scholar
  33. Owusu-Bennoah E, Wild A (1980) Effects of vesicular–arbuscular mycorrhiza on the labile pool of soil phosphate. Plant Soil 54:233–242. doi:10.1007/BF02181849 CrossRefGoogle Scholar
  34. Pfeffer PE, Bago B, Shachar-Hill Y (2001) Exploring mycorrhizal function with NMR spectroscopy. New Phytol 150:543–553. doi:10.1046/j.1469-8137.2001.00139.x CrossRefGoogle Scholar
  35. Plamboeck AH, Dawson TE, Egerton-Warburton LM, North M, Bruns TD, Querejeta JI (2007) Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza 17:439–447. doi:10.1007/s00572-007-0119-4 PubMedCrossRefGoogle Scholar
  36. Ren XW (2002) Dendrology (northern edition). China Forest Press, Beijing, pp 63–201Google Scholar
  37. van den Driessche R (1987) Importance of current photosynthates to new root growth in planted conifer seedlings. Can J Res 17:776–782. doi:10.1139/x87-124 CrossRefGoogle Scholar
  38. Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272. doi:10.1016/S0929-1393(00)00075-5 CrossRefGoogle Scholar
  39. Vierheilig H, Alt-Hug M, Engel-Streitwolf R, Mäder P, Wiemken A (1998) Studies on the attractional effect of root exudates on hyphal growth of an arbuscular mycorrhizal fungus in a soil compartment-membrane system. Plant Soil 203:137–144. doi:10.1023/A:1004329919005 CrossRefGoogle Scholar
  40. Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401. doi:10.1111/j.1469-8137.1995.tb04309.x CrossRefGoogle Scholar
  41. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256. doi:10.1023/A:1014936217105 CrossRefGoogle Scholar
  42. Wallander H, Arnebrant K, Dahlberg A (1999) Relationships between fungal uptake of ammonium, fungal growth and nitrogen availability in ectomycorrhizal Pinus sylvestris seedlings. Mycorrhiza 8:215–223. doi:10.1007/s005720050237 CrossRefGoogle Scholar
  43. Wang JL (1981) Studies on drought tolerance of trees in Beijing western mountain area. Beijing For 2:10–21, in ChineseGoogle Scholar
  44. Wang Y (2004) Environmental degradation and environmental threats in China. Environ Monit Assess 90:161–169. doi:10.1023/B:EMAS.0000003576.36834.c9 PubMedCrossRefGoogle Scholar
  45. Warren JM, Brooks R, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394. doi:10.1111/j.1469-8137.2008.02377.x PubMedCrossRefGoogle Scholar
  46. Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76:381–397. doi:10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 CrossRefGoogle Scholar
  47. Wu B, Nioh I (1997) Growth and water relations of P. tabulaeformis seedlings inoculated with ectomycorrhizal fungi. Microbes Environ 12:69–74Google Scholar
  48. Wu B, Watanabe I, Hayatsu M, Nioh I (1999) Effect of ectomycorrhizae on the growth and uptake and transport of 15N-labeled compounds by Pinus tabulaeformis seedlings under water stressed-conditions. Biol Fertil Soils 28:136–138. doi:10.1007/s003740050474 CrossRefGoogle Scholar
  49. Wu B, Nara K, Hogetsu T (2001) Can C14-labelled photosynthetic products move between Pinus densiflora seedling linked by ectomycorrhizal mycelia? New Phytol 149:137–147. doi:10.1046/j.1469-8137.2001.00010.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Shu-Lan Bai
    • 1
  • Guo-Lei Li
    • 2
  • Yong Liu
    • 2
  • R. Kasten Dumroese
    • 3
  • Rui-Heng Lv
    • 2
  1. 1.College of ForestryInner Mongolia Agricultural UniversityHohhotChina
  2. 2.Key Laboratory for Silviculture and ConservationMinistry of Education, Beijing Forestry UniversityBeijingChina
  3. 3.USDA Forest ServiceRocky Mountain Research StationMoscowUSA

Personalised recommendations