Mycorrhiza

, 19:295 | Cite as

Fern-associated arbuscular mycorrhizal fungi are represented by multiple Glomus spp.: do environmental factors influence partner identity?

  • Brittany West
  • Jessica Brandt
  • Kay Holstien
  • April Hill
  • Malcolm Hill
Original Paper

Abstract

Symbioses involving arbuscular mycorrhizal fungi (AMF) are among the most important ecological associations for many plant species. The diversity of AMF associated with ferns, however, remains poorly studied. Using recently designed Glomus-specific primers, we surveyed the AMF community associated with ferns from deciduous, broad-leaved second-growth forest habitats at the eastern edge of the piedmont region of central Virginia, USA. Results indicate that this molecular approach may be a useful tool for detecting AMF in ferns compared to traditional techniques based on morphology. Over 30 potential fungal ribotypes were identified from eight fern species using denaturing gradient gel electrophoresis. Fungal ribotypes were found to differ widely in terms of (1) the number of fern partners with which they interact and (2) their relative frequency within each fern. Sequence analysis of fungal isolates from three species of fern indicated that the primers were generally highly specific for Glomus species but some non-target DNA was also amplified. Cloned polymerase chain reaction (PCR) products from Polystichum acrostichoides and Osmunda regalis revealed several phylogenetically distinct Glomus species. A single Glomus species was identified in the cloned PCR products from Botrychium virginianum. These findings challenge the hypothesis that the extent or degree of fern–fungal symbiosis is somehow tied to root complexity. Environmental factors appear to influence the suite of AMF that form partnerships with ferns. Some species of fern from similar habitats associated with dissimilar fungal partners (e.g., P. acrostichoides and Athyrium filix-femina var. asplenioides), whereas others harbored uniform fungal communities (e.g., Asplenium platyneuron). The significance of these data in terms of ecological and evolutionary dynamics of the AMF–fern symbiosis is discussed.

Keywords

Symbiosis Ferns Glomus Community structure 

References

  1. Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 373–389Google Scholar
  2. Berch S, Kendrick B (1982) Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74:769–776. doi:10.2307/3792863 CrossRefGoogle Scholar
  3. Boullard B (1979) Considerations sur les symbioses fongiques chez les Pteridophytes. Syllogeus 19:1–58 Nat Mus Nat Sci, OttawaGoogle Scholar
  4. Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:353–359. doi:10.1658/1100-9233(2005)016[0355:GAMAP]2.0.CO;2 http://biodiver.bio.ub.es/ginkgo/Ginkgo.htm Google Scholar
  5. Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359. doi:10.1093/icb/42.2.352 CrossRefGoogle Scholar
  6. Flinn KM (2006) Reproductive biology of three fern species may contribute to differential colonization success in post-agricultural forests. Am J Bot 93:1289–1294. doi:10.3732/ajb.93.9.1289 CrossRefGoogle Scholar
  7. Gamper H, Leuchtmann A (2007) Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland. Mycorrhiza 17:145–152. doi:10.1007/s00572-006-0092-3 PubMedCrossRefGoogle Scholar
  8. Gemma J, Koske R, Flynn T (1992) Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. Am J Bot 79:843–852. doi:10.2307/2444993 CrossRefGoogle Scholar
  9. Gomulkiewicz R, Nuismer S, Thompson J (2003) Coevolution in variable mutualisms. Am Nat 162:S80–S93. doi:10.1086/378705 PubMedCrossRefGoogle Scholar
  10. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520 PubMedCrossRefGoogle Scholar
  11. Gustafson DJ, Casper BB (2006) Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus species. Plant Ecol 183:257–263. doi:10.1007/s11258-005-9037-8 CrossRefGoogle Scholar
  12. Helgason T, Daniell TJ, Husband R, Fitter AH, Young JP (1998) Ploughing up the wood-wide web? Nature 394:431. doi:10.1038/28764 PubMedCrossRefGoogle Scholar
  13. Helgason T, Fitter A, Young J (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Mol Ecol 8:659–666. doi:10.1046/j.1365-294x.1999.00604.x CrossRefGoogle Scholar
  14. Helgason T, Merryweather J, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384. doi:10.1046/j.1365-2745.2001.00674.x CrossRefGoogle Scholar
  15. Helgason T, Merryweather J, Young J, Fitter A (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630. doi:10.1111/j.1365-2745.2007.01239.x CrossRefGoogle Scholar
  16. Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289. doi:10.1111/j.1365-294X.2006.02921.x PubMedCrossRefGoogle Scholar
  17. Hill MS, Hill AL, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol (Berl) 148:1221–1230. doi:10.1007/s00227-005-0164-5 CrossRefGoogle Scholar
  18. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754 PubMedCrossRefGoogle Scholar
  19. Iqbal S, Yousaf M, Younus M (1981) A field survey of mycorrhizal associations in ferns of Pakistan. New Phytol 87:69–79. doi:10.1111/j.1469-8137.1981.tb01691.x CrossRefGoogle Scholar
  20. Janos D (1980) Mycorrhizae influence tropical succession. Biotropica 12(Supp.):56–64. doi:10.2307/2388157 CrossRefGoogle Scholar
  21. Kiers ET, van der Heijden MG (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87:1627–1636. doi:10.1890/0012-9658(2006) 87[1627:MSITAM]2.0.CO;2 PubMedCrossRefGoogle Scholar
  22. Klironomos J, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141. doi:10.1046/j.1461-0248.2000.00131.x CrossRefGoogle Scholar
  23. Kovacs GM, Balazs T, Penzes Z (2007) Molecular study of arbuscular mycorrhizal fungi colonizing the sporophyte of the eusporangiate rattlesnake fern (Botrychium virginianum, Ophioglossaceae). Mycorrhiza 17:597–605. doi:10.1007/s00572-007-0137-2 PubMedCrossRefGoogle Scholar
  24. Laferiére J, Koske R (1981) Occurrence of VA-mycorrhizas in some Rhode Island pteridophytes. Trans Br Mycol Soc 76:331–332CrossRefGoogle Scholar
  25. Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045. doi:10.1139/b04-060 CrossRefGoogle Scholar
  26. Legendre P, Legendre L (1998) Numerical ecology, 2 English edn. Elsevier, New YorkGoogle Scholar
  27. Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012PubMedGoogle Scholar
  28. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton, NJGoogle Scholar
  29. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748. doi:10.1126/science.1143082 PubMedCrossRefGoogle Scholar
  30. Metzgar JS, Skog JE, Zimmer EA, Pryer KM (2008) The paraphyly of Osmunda is confirmed by phylogenetic analyses of seven plastid loci. Syst Bot 33:31–36. doi:10.1600/036364408783887528 CrossRefGoogle Scholar
  31. Muyzer GE, De Waal C, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction–amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–670PubMedGoogle Scholar
  32. Nikolcheva LG, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3:41–49. doi:10.1007/s11557-006-0075-y CrossRefGoogle Scholar
  33. Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Diversity of freshwater fungi on decaying leaves–comparing traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554. doi:10.1128/AEM.69.5.2548-2554.2003 PubMedCrossRefGoogle Scholar
  34. Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824. doi:10.1128/AEM.69.5.2816-2824.2003 PubMedCrossRefGoogle Scholar
  35. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonising arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790. doi:10.1111/j.1365-2745.2006.01136.x CrossRefGoogle Scholar
  36. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  37. Püschel D, Rydlova J, Vosátka M (2007) Mycorrhiza influences plant community structure in succession on spoil banks. Basic Appl Ecol 8:510–520. doi:10.1016/j.baae.2006.09.002 CrossRefGoogle Scholar
  38. Rosendahl S, Stukenbrock EH (2004) Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences. Mol Ecol 13:3179–3186. doi:10.1111/j.1365-294X.2004.02295.x PubMedCrossRefGoogle Scholar
  39. Russell J, Bulman S (2005) The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol 165:567–579. doi:10.1111/j.1469-8137.2004.01251.x PubMedCrossRefGoogle Scholar
  40. Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology, Studies in ecology, vol 157. Springer, Heidelberg, Germany, pp 415–437Google Scholar
  41. Sanders I (2003) Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends Plant Sci 8:143–145. doi:10.1016/S1360-1385(03) 00012-8 PubMedCrossRefGoogle Scholar
  42. Santos-Gonzalez JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613–5623PubMedCrossRefGoogle Scholar
  43. Sato K, Suyama K, Saito M, Sugawara K (2005) A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl Sci 51:179–181. doi:10.1111/j.1744-697X.2005.00023.x CrossRefGoogle Scholar
  44. Scheublin T, Van Logtestun R, van der Heijden M (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 95:631–638. doi:10.1111/j.1365-2745.2007.01244.x CrossRefGoogle Scholar
  45. Schmid E, Oberwinkler F (1995) Light- and electron-microscopic study on a vesicular–arbuscular host-fungus interaction in gametophytes and young sporophytes of the Gleicheniaceae (Filicales). New Phytol 129:317–324. doi:10.1111/j.1469-8137.1995.tb04302.x CrossRefGoogle Scholar
  46. Schuessler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421. doi:10.1017/S0953756201005196 CrossRefGoogle Scholar
  47. Schuettpelz E, Pryer KM (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56:1037–1050Google Scholar
  48. Schwarzott D, Walker C, Schuessler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Mol Phylogenet Evol 21:190–197. doi:10.1006/mpev.2001.1007 PubMedCrossRefGoogle Scholar
  49. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003 CrossRefGoogle Scholar
  50. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, LondonGoogle Scholar
  51. Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23. doi:10.1086/378646 PubMedCrossRefGoogle Scholar
  52. Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi:10.1093/nar/25.24.4876 CrossRefGoogle Scholar
  53. Turnau K, Anielska T, Jurkiewicz A (2005) Mycothallic/mycorrhizal symbiosis of chlorophyllous gametophytes and sporophytes of a fern, Pellaea viridis (Forsk.) Prantl (Pellaeaceae, Pteridales). Mycorrhiza 15:121–128. doi:10.1007/s00572-004-0306-5 PubMedCrossRefGoogle Scholar
  54. van der Heijden M, Wiemken A, Sanders I (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plants. New Phytol 157:569–578. doi:10.1046/j.1469-8137.2003.00688.x CrossRefGoogle Scholar
  55. Vandenkoornhuyse P, Husband B, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564. doi:10.1046/j.1365-294X.2002.01538.x PubMedCrossRefGoogle Scholar
  56. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095. doi:10.1046/j.1365-294X.2003.01967.x PubMedCrossRefGoogle Scholar
  57. Viebahn M, Veenman C, Wernars K, van Loon L, Smit E, Bakker P (2005) Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 53:245–253. doi:10.1016/j.femsec.2004.12.014 PubMedCrossRefGoogle Scholar
  58. Winther JL, Friedman WE (2007) Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae). Am J Bot 94:1248–1255. doi:10.3732/ajb.94.7.1248 CrossRefGoogle Scholar
  59. Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138. doi:10.1016/j.femsec.2004.01.006 CrossRefPubMedGoogle Scholar
  60. Yamato M, Iwase K (2005) Community analysis of arbuscular mycorrhizal fungi in a warm-temperate deciduous broad-leaved forest and introduction of the fungal community into the seedlings of indigenous woody plants. Mycoscience 46:334–342. doi:10.1007/s10267-005-0256-6 CrossRefGoogle Scholar
  61. Yao Q, Zhu H, Hu Y, Li L (2008) Differential influence of native and introduced arbuscular mycorrhizal fungi on growth of dominant and subordinate plants. Plant Ecol 196:261–268. doi:10.1007/s11258-007-9350-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Brittany West
    • 1
  • Jessica Brandt
    • 2
  • Kay Holstien
    • 3
  • April Hill
    • 1
  • Malcolm Hill
    • 1
  1. 1.Biology DepartmentUniversity of RichmondRichmondUSA
  2. 2.Department of BiologyFrostburg State UniversityFrostburgUSA
  3. 3.Program in Developmental BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations