Advertisement

Mycorrhiza

, Volume 19, Issue 5, pp 329–335 | Cite as

Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China

  • Takahide A. IshidaEmail author
  • Kazuhide Nara
  • Shurong Ma
  • Tetsuo Takano
  • Shenkui Liu
Short Note

Abstract

Alkaline-saline soil is widespread in arid and semiarid regions of the world and causes severe environmental and agricultural problems. To advance our understanding of the adaptation of ectomycorrhizal fungi (EMF) to alkaline-saline soil, we investigated EMF communities on Mongolian willow (Salix linearistipularis) growing in alkaline-saline soil (up to pH 9.2) in northeastern China. In total, 75 root samples were collected from 25 willow individuals over 4.7 ha. To identify fungal species in ectomycorrhizal root tips, we used terminal restriction fragment length polymorphism and sequencing analyses of the internal transcribed spacer region of ribosomal DNA. We detected 11 EMF species, including species of Inocybe, Hebeloma, and Tomentella of the Basidiomycota and three Ascomycota species. The EMF richness of the study site was estimated to be 15–17 using major estimators. The most abundant species was Geopora sp. 1, while no Geopora-dominated EMF communities have been reported so far. Phylogenetic analysis showed that the phylogroup including Geopora sp. 1 has been found mostly in alkaline soil habitats, indicating its adaptation to high soil pH. Because EMF are indispensable for host plant growth, the EMF species detected in this study may be useful for restoration of alkaline-saline areas.

Keywords

Alkaline-saline soil Ectomycorrhizal fungal (EMF) community Geopora Salix linearistipularis (syn. Salix mongolicaTerminal restriction fragment length polymorphism (T-RFLP) 

Notes

Acknowledgments

This research was supported by the grant from Heiwa Nakajima Foundation to T. T., Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (No. 0410304) to T. A. I., and Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to K. N.

References

  1. Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse R, Plenchette C, Prin Y, Duponnois R, Thiao M, Sylla S, Dreyfus B, Ba AM (2006) The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza 16:559–565 doi: 10.1007/s00572-006-0073-6 CrossRefPubMedGoogle Scholar
  2. Bidartondo MI, Baar J, Bruns TD (2001) Low ectomycorrhizal inoculum potential and diversity from soils in and near ancient forests of bristlecone pine (Pinus longaeva). Can J Bot 79:293–299 doi: 10.1139/cjb-79-3-293 Google Scholar
  3. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806 doi: 10.1098/rspb.2004.2807 CrossRefGoogle Scholar
  4. Bois G, Piche Y, Fung MYP, Khasa DP (2005) Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15:149–158 doi: 10.1007/s00572-004-0315-4 CrossRefPubMedGoogle Scholar
  5. Bois G, Bertrand A, Piche Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109 doi: 10.1007/s00572-005-0020-y CrossRefPubMedGoogle Scholar
  6. Chen DM, Ellul S, Herdman K, Cairney JWG (2001) Influence of salinity on biomass production by Australian Pisolithus spp. isolates. Mycorrhiza 11:231–236 doi: 10.1007/s005720100126 CrossRefGoogle Scholar
  7. Colwell RK (2006) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.0. http://viceroy.eeb.uconn.edu/EstimateSPages/
  8. Diédhiou AG, Guèye O, Diabaté M, Prin Y, Duponnois R, Dreyfus B, Bâ AM (2005) Contrasting responses to ectomycorrhizal inoculation in seedlings of six tropical African tree species. Mycorrhiza 16:11–17 doi: 10.1007/s00572-005-0007-8 CrossRefPubMedGoogle Scholar
  9. Duñabeitia MK, Hormilla S, Garcia-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14:11–18 doi: 10.1007/s00572-003-0270-5 CrossRefPubMedGoogle Scholar
  10. El Karkouri K, Martin F, Mousain D (2004) Diversity of ectomycorrhizal symbionts in a disturbed Pinus halepensis plantation in the Mediterranean region. Ann For Sci 61:705–710 doi: 10.1051/forest:2004069 CrossRefGoogle Scholar
  11. Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3rd edn. Wiley, New YorkGoogle Scholar
  12. Gao Q, Li JD, Zheng HY (1996) A dynamic landscape simulation model for the alkaline grasslands on Songnen Plain in northeast China. Landscape Ecol 11:339–349 doi: 10.1007/BF02447521 CrossRefGoogle Scholar
  13. Gao Q, Yu M, Li CP, Yun R (1998) Effects of ground water and harvest intensity on alkaline grassland ecosystem dynamics—a simulation study. Plant Ecol 135:165–176 doi: 10.1023/A:1009709411563 CrossRefGoogle Scholar
  14. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118 doi: 10.1111/j.1365-294X.1993.tb00005.x CrossRefPubMedGoogle Scholar
  15. Grogan P, Bruns TD, Chapin FS (2000) Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537–544 doi: 10.1007/s004420050977 CrossRefPubMedGoogle Scholar
  16. Hillel D (2004) Salinity. In: Hillel D (ed) Encyclopedia of soils in the environment. Academic, San Diego, pp 435–442Google Scholar
  17. Hrynkiewicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44 doi: 10.1016/j.ejsobi.2007.10.004 CrossRefGoogle Scholar
  18. Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440 doi: 10.1111/j.1469-8137.2007.02016.x CrossRefPubMedGoogle Scholar
  19. Izzo AD, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630 doi: 10.1111/j.1469-8137.2005.01354.x CrossRefPubMedGoogle Scholar
  20. Kaldorf M, Renker C, Fladung M, Buscot F (2004) Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza 14:295–306 doi: 10.1007/s00572-003-0266-1 CrossRefPubMedGoogle Scholar
  21. Kernaghan G, Hambling B, Fung M, Khasa D (2002) In vitro selection of boreal ectomycorrhizal fungi for use in reclamation of saline-alkaline habitats. Restor Ecol 10:43–51 doi: 10.1046/j.1526-100X.2002.10105.x CrossRefGoogle Scholar
  22. Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068 doi: 10.1111/j.1469-8137.2005.01376.x CrossRefPubMedGoogle Scholar
  23. López-Berenguer C, García-Viguera C, Carvajal M (2006) Are root hydraulic conductivity responses to salinity controlled by aquaporins in broccoli plants? Plant Soil 279:13–23 doi: 10.1007/s11104-005-7010-x CrossRefGoogle Scholar
  24. Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178 doi: 10.1111/j.1469-8137.2005.01545.x CrossRefPubMedGoogle Scholar
  25. Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198 doi: 10.1111/j.1469-8137.2006.01744.x CrossRefPubMedGoogle Scholar
  26. Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743–756 doi: 10.1046/j.1469-8137.2003.00844.x CrossRefGoogle Scholar
  27. Obase K, Tamai Y, Yajima T, Miyamoto T (2007) Mycorrhizal associations in woody plant species at the Mt. Usu volcano, Japan. Mycorrhiza 17:209–215 doi: 10.1007/s00572-006-0097-y CrossRefPubMedGoogle Scholar
  28. Parádi I, Baar J (2006) Mycorrhizal fungal diversity in willow forests of different age along the river Waal, The Netherlands. For Ecol Manag 237:366–372 doi: 10.1016/j.foreco.2006.09.059 CrossRefGoogle Scholar
  29. Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480 doi: 10.1111/j.1461-0248.2007.01035.x CrossRefPubMedGoogle Scholar
  30. Rincón A, Parladé J, Pera J (2005) Effects of ectomycorrhizal inoculation and the type of substrate on mycorrhization, growth and nutrition of containerised Pinus pinea L. seedlings produced in a commercial nursery. Ann For Sci 62:817–822 doi: 10.1051/forest:2005087 CrossRefGoogle Scholar
  31. Rincón A, de Felipe MR, Fernandez-Pascual M (2007) Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18:23–32 doi: 10.1007/s00572-007-0149-y CrossRefPubMedGoogle Scholar
  32. Selosse MA, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426 doi: 10.1007/s00248-003-2034-3 CrossRefPubMedGoogle Scholar
  33. Shang ZB, Gao Q, Dong M (2003) Impacts of grazing on the alkalinized-salinized meadow steppe ecosystem in the Songnen Plain, China—a simulation study. Plant Soil 249:237–251 doi: 10.1023/A:1022848329303 CrossRefGoogle Scholar
  34. Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120 doi: 10.1016/S0065-2113(08)60601-X CrossRefGoogle Scholar
  35. Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164 doi: 10.3732/ajb.95.2.156 CrossRefPubMedGoogle Scholar
  36. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  37. Staudenrausch S, Kaldorf M, Renker C, Luis P, Buscot F (2005) Diversity of the ectomycorrhiza community at a uranium mining heap. Biol Fertil Soils 41:439–446 doi: 10.1007/s00374-005-0849-4 CrossRefGoogle Scholar
  38. Summer ME, Rengasamy P, Naidu R (1998) Sodic soils: a reapprasisal. In: Summer ME, Naidu R (eds) Sodic soils. Oxford University Press, New York, pp 3–17Google Scholar
  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599 doi: 10.1093/molbev/msm092 CrossRefPubMedGoogle Scholar
  40. Tateno M, Hirose T (1987) Nitrification and nitrogen accumulation in the early stages of primary succession on Mt. Fuji. Ecol Res 2:113–120 doi: 10.1007/BF02346920 CrossRefGoogle Scholar
  41. Taylor DL, Herriott IC, Long J, O’Neill K (2007) TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction. Environ Microbiol 9:1329–1334 doi: 10.1111/j.1462-2920.2007.01253.x CrossRefPubMedGoogle Scholar
  42. van der Heijden EW, Kuyper TW (2001) Laboratory experiments imply the conditionality of mycorrhizal benefits for Salix repens: role of pH and nitrogen to phosphorus ratios. Plant Soil 228:275–290 doi: 10.1023/A:1004850423794 CrossRefGoogle Scholar
  43. Wang RZ, Ripley EA (1997) Effects of grazing on a Leymus chinensis grassland on the Songnen plain of north-eastern China. J Arid Environ 36:307–318 doi: 10.1006/jare.1996.0214 CrossRefGoogle Scholar
  44. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar
  45. Yamanaka T (2003) The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia 95:584–589 doi: 10.2307/3761934 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Takahide A. Ishida
    • 1
    • 2
    Email author
  • Kazuhide Nara
    • 1
  • Shurong Ma
    • 3
  • Tetsuo Takano
    • 1
  • Shenkui Liu
    • 1
    • 3
  1. 1.Asian Natural Environmental Science CenterThe University of TokyoNishitokyoJapan
  2. 2.Umeå Plant Science CentreThe Swedish University of Agricultural SciencesUmeåSweden
  3. 3.Alkali Soil Natural Environmental Science CenterNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations