, Volume 19, Issue 4, pp 255–266 | Cite as

Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization

  • Milan GryndlerEmail author
  • Hana Hršelová
  • Tomáš Cajthaml
  • Marie Havránková
  • Veronika Řezáčová
  • Hana Gryndlerová
  • John Larsen
Original Paper


Soil organic matter is known to influence arbuscular mycorrhizal (AM) fungi, but limited information is available on the chemical components in the organic matter causing these effects. We studied the influence of decomposing organic matter (pure cellulose and alfalfa shoot and root material) on AM fungi after 30, 100, and 300 days of decomposition in nonsterile soil with and without addition of mineral N and P. Decomposing organic matter affected maize root length colonized by the AM fungus Glomus claroideum in a similar manner as other plant growth parameters. Colonized root length was slightly increased by both nitrogen and phosphorus application and plant materials, but not by application of cellulose. In vitro hyphal growth of Glomus intraradices was increased by soil extracts from the treatments with all types of organic materials independently of mineral N and P application. Pyrolysis of soil samples from the different decomposition treatments revealed in total 266 recognizable organic compounds and in vitro hyphal growth of G. intraradices in soil extract positively correlated with 33 of these compounds. The strongest correlation was found with 3,4,5-trimethoxybenzoic acid methyl ester. This compound is a typical product of pyrolysis of phenolic compounds produced by angiosperm woody plants, but in our experiment, it was produced mainly from cellulose by some components of the soil microflora. In conclusion, our results indicate that mycelia of AM fungi are influenced by organic matter decomposition both via compounds released during the decomposition process and also by secondary metabolites produced by microorganisms involved in organic matter decomposition.


Pyrolysis Biomarker fatty acid 3,4,5-Substituted benzyl structures Humus 



The financial supports from Czech Science Foundation (Grants 526/03/0188 and 526/06/0540) and Institutional Research Concept AVZ50200510 are gratefully acknowledged. We thank Tina Tønnersen for fatty acid analyses.


  1. Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38:1008–1014. doi: 10.1016/j.soilbio.2005.08.015 CrossRefGoogle Scholar
  2. Avio L, Giovannetti M (1988) Vesicular-arbuscular mycorrhizal colonization of lucerne roots in a cellulose amended soil. Plant Soil 112:99–104. doi: 10.1007/BF02181758 CrossRefGoogle Scholar
  3. Bethlenfalvay GJ, Pacovsky RS, Bayne HG, Stafford AE (1982) Interactions between nitrogen fixation, mycorrhizal colonization, and host-plant growth in the PhaseolusRhizobiumGlomus symbiosis. Plant Physiol 70:446–450CrossRefPubMedPubMedCentralGoogle Scholar
  4. Calvet C, Estaun V, Camprubi A (1992) Germination, early mycorrhizal growth and infectivity of a vesicular–arbusular mycorrhizal fungus in organic substrates. Symbiosis 14:405–411Google Scholar
  5. Capoor KK, Jain MK, Mishra MM, Singh CP (1978) Cellulase activity, degradation of cellulose and lignin and humus formation by cellulolytic fungi. Ann Microbiol 129B:613–620Google Scholar
  6. Dai XY, Ping CL, Michaelson GJ (2002) Characterizing soil organic matter in Arctic tundra soils by different analytical approaches. Org Geochem 33:407–419. doi: 10.1016/S0146-6380(02)00012-8 CrossRefGoogle Scholar
  7. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  8. Gryndler M, Vejsadová H, Vančura V (1992) The effect of magnesium ions on the vesicular-arbuscular mycorrhizal infection of maize roots. New Phytol 122:455–460. doi: 10.1111/j.1469-8137.1992.tb00073.x CrossRefGoogle Scholar
  9. Gryndler M, Vosátka M, Hršelová H, Chvátalová I, Škrdleta V (1998) Effect of glucose on the development of Glomus fistulosum colonization and extraradical mycelium on maize roots. Folia Microbiol (Praha) 43:635–643. doi: 10.1007/BF02816382 CrossRefGoogle Scholar
  10. Gryndler M, Vosátka M, Hršelová H, Chvátalová I, Jansa J (2002) Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. Appl Soil Ecol 19:279–288. doi: 10.1016/S0929-1393(02)00004-5 CrossRefGoogle Scholar
  11. Gryndler M, Hršelová H, Sudová R, Gryndlerová H, Řezáčová V, Merhautová V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG23 is stimulated by humic substances. Mycorrhiza 15:483–488. doi: 10.1007/s00572-005-0352-7 CrossRefPubMedGoogle Scholar
  12. Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159–166. doi: 10.1007/s00572-005-0027-4 CrossRefPubMedGoogle Scholar
  13. Ha KV, Marschner P, Bünemann EK, Smernik RJ (2007) Chemical changes and phosphorus release during decomposition of pea residues in soil. Soil Biol Biochem 39:2696–2699. doi: 10.1016/j.soilbio.2007.05.017 CrossRefGoogle Scholar
  14. Hatcher PG, Clifford DJ (1994) Flash pyrolysis and in-situ methylation of humic acids from soil. Org Geochem 21:1081–1092. doi: 10.1016/0146-6380(94)90071-X CrossRefGoogle Scholar
  15. Hepper CM, Warner A (1983) Role of organic matter in growth of a vesicular-arbuscular mycorrhizal fungi in soil. Trans Br Mycol Soc 81:155–156CrossRefGoogle Scholar
  16. Hermosin B, Trubetskoj OA, Trubetskaya OE, Sainz-Jimenez C (2001) Thermally assisted hydrolysis and methylation of humic fractions obtained by polyacrylamide gel electrophoresis. J Anal Appl Pyrolysis 58-59:341–347. doi: 10.1016/S0165-2370(00)00213-8 CrossRefGoogle Scholar
  17. Joner E, Jakobsen I (1990) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153–1159. doi: 10.1016/0038-0717(95)00047-I CrossRefGoogle Scholar
  18. Karliński L, Ravnskov S, Kieliszewska-Rokicka B, Larsen J (2007) Fatty acid composition of various ectomycorrhizal fungi and ectomycorrhizas of Norway spruce. Soil Biol Biochem 39:854–866. doi: 10.1016/j.soilbio.2006.10.003 CrossRefGoogle Scholar
  19. Kelly RM, Edwards DG, Thompson JP, Magarey RC (2005) Growth responses of sugarcane to mycorrhizal spore density and phosphorus rate. Aust J Agric Res 56:1405–1413CrossRefGoogle Scholar
  20. Lechevalier H, Lechevalier MP (1988) Chemotaxonomic use of lipids an overview. In: Ratledge C, Wilkinson S (eds) Microbial Lipids, Vol. 1. Academic Press, New York, pp 869–902Google Scholar
  21. Lejon DPH, Sebastia J, Lamy I, Chaussod R, Ranjard L (2007) Relationships between soil organic status and microbial community density and genetic structure in two agricultural soils submitted to various types of organic management. Microb Ecol 53:650–663. doi: 10.1007/s00248-006-9145-6 CrossRefPubMedGoogle Scholar
  22. Malcová R, Gryndler M, Hršelová H, Vosátka M (2002) The effect of fulvic acids on the toxicity of lead and manganese to arbuscular mycorrhizal fungus Glomus intraradices. Folia Microbiol (Praha) 47:521–526. doi: 10.1007/BF02818792 CrossRefGoogle Scholar
  23. Mishra MM, Singh CP, Capoor KK, Jain MK (1979) Degradation of lignocellulosic material and humus formation by fungi. Ann Microbiol 130A:481–486Google Scholar
  24. Newman EI (1966) A method of estimating total length of root in a sample. J Appl Ecol 3:139–145. doi: 10.2307/2401670 CrossRefGoogle Scholar
  25. Olk DC, Dancel MC, Moscoso E, Jimenez RR, Dayrit FM (2002) Accumulation of lignin residues in organic matter fractions of lowland rice soils: a pyrolysis-GC-MS study. Soil Sci 167:590–606. doi: 10.1097/00010694-200209000-00004 CrossRefGoogle Scholar
  26. Ratledge S, Wilkinson SG (1988) An overview of microbial lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. vol. 1. Academic, London, pp 3–22Google Scholar
  27. Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various organic compounds growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517–524. doi: 10.1046/j.1469-8137.1999.00353.x CrossRefGoogle Scholar
  28. Ravnskov S, Jensen B, Knudsen IMB, Bodker L, Jensen DF, Karlinski L, Larsen J (2006) Soil inoculation with the biocontrol agent Clonostachys rosea and the mycorrhizal fungus Glomus intraradices results in mutual inhibition, plant growth promotion and alteration of soil microbial communities. Soil Biol Biochem 38:3453–3462. doi: 10.1016/j.soilbio.2006.06.003 CrossRefGoogle Scholar
  29. Rydlová J, Vosátka M (2000) Sporulation of symbiotic arbuscular mycorrhizal fungi inside dead seeds of a non-host plant. Symbiosis 29:231–248Google Scholar
  30. Schwarzinger C (2005) Identification of fungi with analytical pyrolysis and thermally assisted hydrolysis and methylation. J Anal Appl Pyrolysis 74:26–32. doi: 10.1016/j.jaap.2004.11.025 CrossRefGoogle Scholar
  31. Simonelt BRT, Rogge WF, Mazurek MA, Standley LJ, Hildemann LM, Cass GR (1993) Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ Sci Technol 27:2533–2541. doi: 10.1021/es00048a034 CrossRefGoogle Scholar
  32. Steffen KT, Cajthaml T, Šnajdr J, Baldrian P (2007) Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Res Microbiol 158:447–455. doi: 10.1016/j.resmic.2007.04.002 CrossRefPubMedGoogle Scholar
  33. StJohn TV, Coleman DC, Reid CPP (1983) Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64:957–959. doi: 10.2307/1937216 CrossRefGoogle Scholar
  34. Thygesen K, Larsen J, Bødker (2004) Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. Eur J Plant Pathol 110:411–419. doi: 10.1023/B:EJPP.0000021070.61574.8b CrossRefGoogle Scholar
  35. Turner WB (1971) Fungal metabolites. Academic, London, p 40Google Scholar
  36. Vane CH (2003) The molecular composition of lignin in spruce decayed by white-rot fungi (Phanerochaete chrysosporium and Trametes versicolor) using pyrolysis-GC-MS and thermochemolysis with tetramethylammonium hydroxide. Int Biodeter Biodegr 51:67–75. doi: 10.1016/S0964-8305(02)00089-6 CrossRefGoogle Scholar
  37. Vane CH, Drage TC, Snape CE (2003) Biodegradation of oak (Quercus alba) wood during growth of the shiitake mushroom (Lentinula edodes): a molecular approach. J Agric Food Chem 51:947–956. doi: 10.1021/jf020932h CrossRefPubMedGoogle Scholar
  38. Wilkinson SG (1988) Gram-negative bacteria. In: Ratledge S, Wilkinson SG (eds) Microbial lipids,. vol. 1. Academic, New York, pp 299–488Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Milan Gryndler
    • 1
    Email author
  • Hana Hršelová
    • 1
  • Tomáš Cajthaml
    • 1
  • Marie Havránková
    • 2
    • 3
  • Veronika Řezáčová
    • 1
  • Hana Gryndlerová
    • 1
  • John Larsen
    • 4
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
  3. 3.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  4. 4.Department of Integrated Pest Management, Faculty of Agricultural ScienceUniversity of AarhusSlagelseDenmark

Personalised recommendations