, Volume 19, Issue 1, pp 15–25 | Cite as

Fungal associates of Pyrola rotundifolia, a mixotrophic Ericaceae, from two Estonian boreal forests

  • Lucie Vincenot
  • Leho Tedersoo
  • Franck Richard
  • Houria Horcine
  • Urmas Kõljalg
  • Marc-André Selosse
Original Paper


Pyrola rotundifolia (Ericaceae, Pyroleae tribe) is an understorey subshrub that was recently demonstrated to receive considerable amount of carbon from its fungal mycorrhizal associates. So far, little is known of the identity of these fungi and the mycorrhizal anatomy in the Pyroleae. Using 140 mycorrhizal root fragments collected from two Estonian boreal forests already studied in the context of mixotrophic Ericaceae in sequence analysis of the ribosomal DNA internal transcribed spacer region, we recovered 71 sequences that corresponded to 45 putative species in 19 fungal genera. The identified fungi were mainly ectomycorrhizal basidiomycetes, including Tomentella, Cortinarius, Russula, Hebeloma, as well as some ectomycorrhizal and/or endophytic ascomycetes. The P. rotundifolia fungal communities of the two forests did not differ significantly in terms of species richness, diversity and nutritional mode. The relatively high diversity retrieved suggests that P. rotundifolia does not have a strict preference for any fungal taxa. Anatomical analyses showed typical arbutoid mycorrhizae, with variable mantle structures, uniseriate Hartig nets and intracellular hyphal coils in the large epidermal cells. Whenever compared, fungal ultrastructure was congruent with the molecular identification. Similarly to other mixotrophic and autotrophic pyroloids in the same forests, P. rotundifolia shares its mycorrhizal fungal associates with surrounding trees that are likely a carbon source for pyroloids.


Arbutoid mycorrhizae Ericaceae Ectomycorrhizal communities Endophytic fungi Mixotrophy Mycorrhizal anatomy 



We thank Marie-Pierre Dubois and Violette Frennehardt for technical help in molecular work. U. Kõljalg and L. Tedersoo are funded by the Estonian Science Foundation (grants no. 6606, 7434, Gdhlm0092j; Rloomtipp) and M.-A. Selosse by the Centre National de la Recherche Scientifique and the Société Française d’Orchidophilie. Molecular data used in this work were produced through molecular genetic analysis technical facilities of the IFR119 ‘Montpellier Environnement Biodiversité’.


  1. Abadie J-C, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse M-A (2006) Cephalantera longifolia (Neottiae, Orchidaceae) is mixotrophic: a comparative study between green and non-photosynthetic individuals. Can J Bot 84:1462–1477 doi: 10.1139/B06-101 CrossRefGoogle Scholar
  2. Berta G, Bonfante-Fasolo P (1983) Apical meristems in mycorrhizal and uninfected roots of Calluna vulgaris (L.) Hull. Plant Soil 71:285–291 doi: 10.1007/BF02182664 CrossRefGoogle Scholar
  3. Bidartondo MI, Bruns TD, Weiss M, Sergio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B Biol Sci 270:835–842 doi: 10.1098/rspb.2002.2299 CrossRefGoogle Scholar
  4. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806 doi: 10.1098/rspb.2004.2807 CrossRefGoogle Scholar
  5. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223 doi: 10.1046/j.1469-8137.2003.00872.x CrossRefGoogle Scholar
  6. Hashimoto Y, Kunishi A, Hasegawa S (2005) Interspecific C transfers from Larix kaempferi Carrto Pyrola incarnata Fischer by way of mycorrhizal fungi. Inoculum 56:23–24 (supplement to Mycologia)Google Scholar
  7. Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126 doi: 10.1046/j.1469-8137.2003.00657.x CrossRefGoogle Scholar
  8. Julou T, Burhardt B, Gebauer G, Berviller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and non-photosynthetic mutants of Cephalanthera damasonium. New Phytol 166:639–653 doi: 10.1111/j.1469-8137.2005.01364.x CrossRefPubMedGoogle Scholar
  9. Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068 doi: 10.1111/j.1469-8137.2005.01376.x CrossRefPubMedGoogle Scholar
  10. Leake JR (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:422–428 doi: 10.1016/j.pbi.2004.04.004 CrossRefPubMedGoogle Scholar
  11. Lück R (1941) Zur Keimung der heimischen Pirola-Arten. Flora Jena 135:1–5Google Scholar
  12. Massicotte HB, Melville LH, Tackaberry L, Peterson RL (2008) A comparative study of mycorrhizas in several genera of Pyroleae (Ericaceae) from western Canada. Botany 86:610–622 doi: 10.1139/B08-027 CrossRefGoogle Scholar
  13. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinfo 4:193–201CrossRefGoogle Scholar
  14. Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex L. New Phytol 166:1011–1023 doi: 10.1111/j.1469-8137.2005.01382.x CrossRefPubMedGoogle Scholar
  15. Robertson DC, Robertson JA (1985) Ultrastructural aspects of Pyrola mycorrhizae. Can J Bot 63:1089–1098 doi: 10.1139/b85-150 CrossRefGoogle Scholar
  16. Selosse M-A, Weiß M, Jany J-L, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844 doi: 10.1046/j.1365-294X.2002.01553.x CrossRefPubMedGoogle Scholar
  17. Selosse M-A, Faccio A, Scappaticci P, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426 doi: 10.1007/s00248-003-2034-3 CrossRefPubMedGoogle Scholar
  18. Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 11:621–628 doi: 10.1016/j.tree.2006.07.003 CrossRefGoogle Scholar
  19. Selosse M-A, Setaro S, Glatard F, Urcelayand C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878 doi: 10.1111/j.1469-8137.2007.02064.x CrossRefPubMedGoogle Scholar
  20. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, LondonGoogle Scholar
  21. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686 doi: 10.1017/S095375620500273X CrossRefPubMedGoogle Scholar
  22. Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165 doi: 10.1046/j.1469-8137.2003.00792.x CrossRefGoogle Scholar
  23. Tedersoo L, Pellet P, Kõljalg U, Selosse M-A (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217 doi: 10.1007/s00442-006-0581-2 CrossRefPubMedGoogle Scholar
  24. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I et al (2008a) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol doi: 10.1111/j.1469-8137.2008.02561.x
  25. Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008b) Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201 doi: 10.1111/j.1462-2920.2007.01535.x CrossRefPubMedGoogle Scholar
  26. Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol 160:391–401 doi: 10.1046/j.1469-8137.2003.00876.x CrossRefGoogle Scholar
  27. Zeller B, Brechet C, Maurice J-P, Le Tacon F (2007) 13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Ann For Sci 64:419–429 doi: 10.1051/forest:2007019 CrossRefGoogle Scholar
  28. Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175 doi: 10.1111/j.1469-8137.2007.02065.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Lucie Vincenot
    • 1
  • Leho Tedersoo
    • 2
    • 3
  • Franck Richard
    • 1
  • Houria Horcine
    • 1
  • Urmas Kõljalg
    • 2
  • Marc-André Selosse
    • 1
  1. 1.Centre d’Ecologie Fonctionnelle et Evolutive (CNRS, UMR 5175)Equipe Interactions BiotiquesMontpellier Cedex 5France
  2. 2.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
  3. 3.Natural History Museum of Tartu UniversityTartuEstonia

Personalised recommendations