, Volume 18, Issue 8, pp 413–427

Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation?

  • A. Corrêa
  • R. J. Strasser
  • M. A. Martins-Loução
Original Paper


In the present work, the following hypotheses were tested: (1) the negative effects of mycorrhization over host plant productivity in N-limited conditions are due to N retention by the fungal partner and not due to excessive C drainage; (2) If mycorrhization results in decreased N uptake, the host plant decreases its C investment in fungal growth. The effects of mycorrhization over a wide range of combinations between N availability, N concentration in plant tissues, and degree of mycorrhizal colonization were studied in Pinus pinaster L. mycorrhizal with Pisolithus tinctorius. Several plant productivity parameters, the seedlings’ N status, chl a fluorescence (JIP test), and mycorrhizal colonization were measured. N was always limiting. A gradient of mycorrhizal effects over the host plant’s growth and vitality was successfully obtained. The mycorrhizal effects on plant growth and N uptake were very strongly and positively correlated, and no evidence was found of a C limitation to growth, confirming hypothesis 1. Indications were found that the plants continued to provide C to the fungus although the N supplied by it was increasingly lower, denying hypothesis 2. A new index, the mycorrhizal N demand–supply balance, was found to efficiently explain, and to have a curvilinear relation with, the variation in response to mycorrhization. The mycorrhizal effect on host plant growth was not related to a negative effect on its photosynthetic performance and, therefore, reflected changes in resource allocation between host plant and mycorrhizal fungus, not in plant vitality.


Ammonium Chlorophyll a fluorescence Colonization density Cost–benefit Demand–supply Ectomycorrhizae Mycorrhizal response Nitrogen O-J-I-P test 


  1. Brockley R (2001) Foliar sampling guidelines and nutrient interpretative criteria for lodgepole pine. Extension Note 52. British Columbia Ministry of Forests, VictoriaGoogle Scholar
  2. Bücking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula × Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21:101–107PubMedGoogle Scholar
  3. Clapperton MJ, Reid DM (1992) A relationship between plant growth and increasing VA mycorrhizal inoculum density. New Phytol 120:227–234 doi:10.1111/j.1469-8137.1992.tb05658.x CrossRefGoogle Scholar
  4. Colpaert JV, Assche JA, Luitjens K (1992) The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytol 120:127–135 doi:10.1111/j.1469-8137.1992.tb01065.x CrossRefGoogle Scholar
  5. Colpaert JV, Van Laere A, Van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol 16:787–793Google Scholar
  6. Colpaert JV, Van Tichelen KK, Van Assche JA, Van Laere A (1999) Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytol 143:589–597 doi:10.1046/j.1469-8137.1999.00471.x CrossRefGoogle Scholar
  7. Conjeaud C, Scheromm P, Moussain D (1996) Effects of phosphorus and ectomycorrhiza on maritime pine seedlings (Pinus pinaster). New Phytol 133:345–351 doi:10.1111/j.1469-8137.1996.tb01901.x CrossRefGoogle Scholar
  8. de Mazancourt C, Loreau M, Dieckman U (2005) Understanding mutualism when there is adaptation to the partner. J Ecol 93:305–314 doi:10.1111/j.0022-0477.2004.00952.x CrossRefGoogle Scholar
  9. Dickson S, Smith SE, Smith FA (1999) Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: colonization, plant growth and phosphate uptake. New Phytol 144:163–172 doi:10.1046/j.1469-8137.1999.00493.x CrossRefGoogle Scholar
  10. Dosskey MG, Linderman RG, Boersma L (1990) Carbon-sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. New Phytol 115:269–274 doi:10.1111/j.1469-8137.1990.tb00452.x CrossRefGoogle Scholar
  11. Douds DD, Johnson CR, Koch KE (1988) Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol 86:491–496PubMedCrossRefGoogle Scholar
  12. Eltrop L, Marschner H (1996) Growth and mineral nutrition of non-mycorrhizal and mycorrhizal Norway spruce (Picea abies) seedlings grown in semi-hydroponic sand culture. I. Growth and mineral nutrient uptake in plants supplied with different forms of nitrogen. New Phytol 133:469–478 doi:10.1111/j.1469-8137.1996.tb01914.x CrossRefGoogle Scholar
  13. Ericsson T, Ingestad T (1988) Nutrition and growth of birch seedlings at varied relative phosphorus addition rates. Physiol Plant 72:227–235 doi:10.1111/j.1399-3054.1988.tb05827.x CrossRefGoogle Scholar
  14. Fitter AH (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6 doi:10.1111/j.1469-8137.2006.01861.x PubMedCrossRefGoogle Scholar
  15. Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonization and plant "benefit". Oikos 87:615–621 doi:10.2307/3546829 CrossRefGoogle Scholar
  16. George E, Kircher S, Schwarz P, Tesar A, Seith B (1999) Effect of varied soil nitrogen supply on growth and nutrient uptake of young Norway spruce plants grown in a shaded environment. J Plant Nutr Soil Sci 162:301–307 doi:10.1002/(SICI)1522-2624(199906)162:3<301::AID-JPLN301>3.0.CO;2-1 CrossRefGoogle Scholar
  17. Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569 doi:10.1890/05-0755 PubMedCrossRefGoogle Scholar
  18. Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126 doi:10.1046/j.1469-8137.2003.00657.x CrossRefGoogle Scholar
  19. Hunt R (1982) Plant growth analysis. Studies in Biology 96. Arnold, LondonGoogle Scholar
  20. Ingestad T, Lund A (1979) Nitrogen stress in birch seedlings. I. Growth technique and growth. Physiol Plant 45:137–148 doi:10.1111/j.1399-3054.1979.tb01678.x CrossRefGoogle Scholar
  21. Ingestad T, Ågren GI (1988) Nutrient uptake and allocation at steady-state nutrition. Physiol Plant 72:450–459 doi:10.1111/j.1399-3054.1988.tb09150.x CrossRefGoogle Scholar
  22. Ingestad T, Arveby AS, Kähr M (1986) The influence of ectomycorrhiza on nitrogen nutrition and growth of Pinus sylvestris seedlings. Physiol Plant 68:575–582 doi:10.1111/j.1399-3054.1986.tb03399.x CrossRefGoogle Scholar
  23. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91 doi:10.1007/s00572-006-0094-1 PubMedCrossRefGoogle Scholar
  24. Javelle A, Chalot M, Söderström B, Botton B (1999) Ammonium and methylamine transport by the ectomycorrhizal fungus Paxillus involutus and ectomycorrhizas. FEMS Microbiol Ecol 30:355–366 doi:10.1111/j.1574-6941.1999.tb00663.x PubMedCrossRefGoogle Scholar
  25. Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms. Can J Bot 82:1089–1109 doi:10.1139/b04-110 CrossRefGoogle Scholar
  26. Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytologist 115:259–267CrossRefGoogle Scholar
  27. Jones MD, Durall DM, Tinker PB (1991) Fluxes of carbon and phosphorus between symbionts in willow ectomycorrhizas and their changes with time. New Phytologist 119:99–106CrossRefGoogle Scholar
  28. Jones MD, Durall DM, Tinker PB (1998) A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist 140:125–134CrossRefGoogle Scholar
  29. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585 doi:10.1046/j.1469-8137.1997.00729.x CrossRefGoogle Scholar
  30. Kytöviita M (2005) Role of nutrient level and defoliation on symbiotic function: experimental evidence by tracing 14C/15N exchange in mycorrhizal birch seedlings. Mycorrhiza 15:65–70 doi:10.1007/s00572-004-0337-y PubMedCrossRefGoogle Scholar
  31. Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New YorkGoogle Scholar
  32. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  33. Nehls U, Grunze N, Willmann M, Reich M, Küster H (2007) Sugar for my honey: Carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91 doi:10.1016/j.phytochem.2006.09.024 PubMedCrossRefGoogle Scholar
  34. Neuhauser C, Fargione JE (2004) A mutualism-parasitism continuum model and its application to plant mycorrhizae interactions. Ecol Modell 177:337–352 doi:10.1016/j.ecolmodel.2004.02.010 CrossRefGoogle Scholar
  35. Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416 doi:10.1046/j.1469-8137.2003.00728.x CrossRefGoogle Scholar
  36. Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79:1029–1038CrossRefGoogle Scholar
  37. Selle A, Willmann M, Grunze N, Geßler A, Weiß M, Nehls U (2005) The high-affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytol 168:697–706 doi:10.1111/j.1469-8137.2005.01535.x PubMedCrossRefGoogle Scholar
  38. Strasser R, Tsimilli-Michael M, Srivastava A (2004) Analysis of the fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll Fluorescence a Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series. Kluwer Academic, Dordrech, pp 321–362Google Scholar
  39. Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515 doi:10.1046/j.1469-8137.2002.00470.x CrossRefGoogle Scholar
  40. Tuomi J, Kytöviita M, Härdling R (2001) Cost efficiency of nutrient acquisition and the advantage of mycorrhizal symbiosis for the host plant. Oikos 92:62–70 doi:10.1034/j.1600-0706.2001.920108.x CrossRefGoogle Scholar
  41. van den Driessche P, van den Driessche R (1991) Growth analysis. In: van den Driessche R (ed) Mineral nutrition of conifer seedlings. CRC, Boca Raton, pp 61–84Google Scholar
  42. Wallander H (1995) A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 169:243–248 doi:10.1007/BF00029334 CrossRefGoogle Scholar
  43. Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187 doi:10.1046/j.1469-8137.1998.00176.x CrossRefGoogle Scholar
  44. Wallander H, Nylund JE (1991) Effects of excess nitrogen on carbohydrate concentration and mycorrhizal development of Pinus sylvestris L. seedlings. New Phytol 119:405–411 doi:10.1111/j.1469-8137.1991.tb00040.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Corrêa
    • 1
  • R. J. Strasser
    • 2
  • M. A. Martins-Loução
    • 1
  1. 1.Centro de Ecologia e Biologia Vegetal—CEBVUniversidade de Lisboa, Faculdade de CiênciasLisbonPortugal
  2. 2.Laboratoire de BioénergétiqueUniversité de GenèveJussySwitzerland

Personalised recommendations