, Volume 18, Issue 6–7, pp 363–374

Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone

Original Paper


Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)–juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.


Ectomycorrhizal fungi Community dynamics Plant neighbor Mycorrhizal network Species composition 


  1. Abella SR, Covington WW (2006) Forest ecosystems of an Arizona Pinus ponderosa landscape: multifactor classification and implications for ecological restoration. J Biogeogr 33:1368–1383 doi:10.1111/j.1365-2699.2006.01513.x CrossRefGoogle Scholar
  2. Allender CJ, Easterday WR, Van Ert MN, Wagner DM, Keim P (2004) High-throughput extraction of arthropod vector and pathogen DNA using bead milling. Biotechniques 37:730–734PubMedGoogle Scholar
  3. Bakker MR, Garbye J, Nys C (2000) Effect of liming on the ectomycorrhizal status of oak. For Ecol Manag 126:121–131CrossRefGoogle Scholar
  4. Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. New Phytol 152:139–149 doi:10.1046/j.0028-646x.2001.00245.x CrossRefGoogle Scholar
  5. Baxter JW, Dighton J (2005) Phosphorus source alters host plant response to ectomycorrhizal diversity. Mycorrhiza 15:513–523 doi:10.1007/s00572-005-0359-0 PubMedCrossRefGoogle Scholar
  6. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG et al (2005) Regional vegetation die-off in response to global-change type drought. Proc Natl Acad Sci USA 102:15144–15148 doi:10.1073/pnas.0505734102 PubMedCrossRefGoogle Scholar
  7. Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73 doi:10.1007/BF02183055 CrossRefGoogle Scholar
  8. Burgess T, Dell D, Malajczuk N (1994) Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739 doi:10.1111/j.1469-8137.1994.tb02977.x CrossRefGoogle Scholar
  9. Chao A (1987) Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43:783–791 doi:10.2307/2531532 PubMedCrossRefGoogle Scholar
  10. Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below-ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335CrossRefGoogle Scholar
  11. Despain WP, Mosley JC (1990) Fire history and stand structures of a pinyon–juniper woodland at Walnut Canyon National Monument, Arizona. National Park Service Technical Report No. 34Google Scholar
  12. Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255 doi:10.1111/j.1365-2745.2005.00977.x CrossRefGoogle Scholar
  13. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535 doi:10.1046/j.1469-8137.2002.00535.x CrossRefGoogle Scholar
  14. Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375–382 doi:10.1111/j.1469-8137.2004.01177.x CrossRefGoogle Scholar
  15. Dickie IA, Oleksyn J, Reich PB, Karolewski P, Zytkowiak R, Jagodzinski AM et al (2006) Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. Mycorrhiza 16:73–79 doi:10.1007/s00572-005-0013-x PubMedCrossRefGoogle Scholar
  16. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68 doi:10.1007/BF00038687 CrossRefGoogle Scholar
  17. Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ECM associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytol 112:185–192 doi:10.1111/j.1469-8137.1989.tb02373.x CrossRefGoogle Scholar
  18. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118 doi:10.1111/j.1365-294X.1993.tb00005.x PubMedCrossRefGoogle Scholar
  19. Gardes M, Bruns TD (1996) Community structure of ECM fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583 doi:10.1139/b96-190 CrossRefGoogle Scholar
  20. Gehring CA, Whitham TG (1994) Comparisons of ectomycorrhizae on pinyons (Pinus edulis, Pinaceae) across extremes of soil type and herbivory. Am J Bot 81:1509–1516 doi:10.2307/2445327 CrossRefGoogle Scholar
  21. Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79:1562–1572CrossRefGoogle Scholar
  22. Gitlin A, Sthultz CM, Bowker MA, Stumpf S, Ecton K, Kennedy K et al (2006) Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv Biol 20:1477–1486 doi:10.1111/j.1523-1739.2006.00424.x PubMedCrossRefGoogle Scholar
  23. Hall T (2007) BioEdit biological sequence alignment editor, version 7.0.9. Carlsbad, CA, USA: Ibis BiosciencesGoogle Scholar
  24. Haskins KE, Gehring CA (2004) Interactions with juniper alter the abundance and composition of pinyon pine ectomycorrhizal fungal communities. Ecology 85:2687–2692 doi:10.1890/04-0306 CrossRefGoogle Scholar
  25. Haskins KE, Gehring CA (2005) Evidence for mutualist limitation: the impacts of conspecific density on the mycorrhizal inoculum potential of woodland soils. Oecologia 145:123–131 doi:10.1007/s00442-005-0115-3 PubMedCrossRefGoogle Scholar
  26. Hasselquist N, Germino MJ, McGonigle T, Smith WK (2005) Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine-treeline. New Phytol 165:867–873 doi:10.1111/j.1469-8137.2005.01275.x PubMedCrossRefGoogle Scholar
  27. Hooten JA, Ort MA, Eslon MD (2001) Origin of cinders in Wupatki National Monument, Technical Report 2001–12. Desert Archaeology, Tucson, AZGoogle Scholar
  28. Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas-fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339 doi:10.1046/j.1469-8137.1998.00185.x CrossRefGoogle Scholar
  29. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol Ecol 10:1855–1871 doi:10.1046/j.0962-1083.2001.01333.x PubMedCrossRefGoogle Scholar
  30. Hungate BA, Hart SC, Selmants PC, Boyle SI, Gehring CA (2007) Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests. Ecol Appl 17:1352–1365 doi:10.1890/06-1187.1 PubMedCrossRefGoogle Scholar
  31. Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440 doi:10.1111/j.1469–8137.2007.02016.x PubMedCrossRefGoogle Scholar
  32. Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364 doi:10.1034/j.1600-0706.2001.930301.x CrossRefGoogle Scholar
  33. Kennedy KJ (2005) Above- and belowground impacts of off-road vehicles negatively affect establishment of a dominant forest tree. Masters thesis, Flagstaff, AZ, USA: Northern Arizona UniversityGoogle Scholar
  34. Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080 doi:10.1046/j.1365-2745.2003.00829.x CrossRefGoogle Scholar
  35. Kennedy PG, Bergemann SE, Hortal S, Bruns TD (2007) Determining the outcome of field-based competition between two Rhizopogon species using real-time PCR. Mol Ecol 16:881–890 doi:10.1111/j.1365-294X.2006.03191.x PubMedCrossRefGoogle Scholar
  36. Kernaghan G, Widden P, Bergeron Y, Légaré S, Paré D (2003) Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos 102:497–504 doi:10.1034/j.1600-0706.2003.12415.x CrossRefGoogle Scholar
  37. Koide RT, Xu B, Sharda JN, Lekberg Y, Ostiguy N (2005) Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 165:305–316 doi:10.1111/j.1469-8137.2004.01216.x PubMedCrossRefGoogle Scholar
  38. Koide RT, Shumway DL, Xu B, Sharda JN (2007) On temporal partitioning of a community of ectomycorrhizal fungi. New Phytol 174:420–429 doi:10.1111/j.1469-8137.2007.02000.x PubMedCrossRefGoogle Scholar
  39. Lewis JD, Thomas RB, Strain BR (1994) Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Plant Soil 165:81–88 doi:10.1007/BF00009965 CrossRefGoogle Scholar
  40. Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231 doi:10.1046/j.1469-8137.2002.00367.x CrossRefGoogle Scholar
  41. Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332 doi:10.1016/j.femsec.2004.04.004 CrossRefPubMedGoogle Scholar
  42. Massicotte HB, Molina R, Tackaberry LE, Smith JE, Amaranthus MP (1999) Diversity and host specificity of ectomycorrhizal fungi retrieved from three adjacent forest sites by five host species. Can J Bot 77:1053–1076 doi:10.1139/cjb-77-8-1053 CrossRefGoogle Scholar
  43. McCune B, Mefford MJ (1999) Multivariate analysis of ecological data, version 4.25. Gleneden Beach, OR, USA: MJM SoftwareGoogle Scholar
  44. McHugh TA, Gehring CA (2006) Belowground interactions with arbuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytol 171:171–178 doi:10.1111/j.1469-8137.2006.01735.x PubMedCrossRefGoogle Scholar
  45. Michelsen A, Schmidt IK, Jonasson S, Dighton J, Jones HE, Callaghan TV (1995) Inhibition of growth, and nutrient uptake of arctic graminoids by leaf-extracts—allelopathy or resource competition between plants and microbes. Oecologia 102:407–418 doi:10.1007/BF00328678 CrossRefGoogle Scholar
  46. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community–ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrated plant–fungal process. Chapman and Hall, London, pp 357–423Google Scholar
  47. Mueller RC, Gehring CA (2006) Interactions between an above-ground plant parasite and below-ground ectomycorrhizal fungal communities on pinyon pine. J Ecol 94:276–284 doi:10.1111/j.1365-2745.2006.01105.x CrossRefGoogle Scholar
  48. Mueller RC, Scudder CM, Porter ME, Trotter RT III, Gehring CA, Whitham TG (2005) Differential mortality of pinyon pine in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093 doi:10.1111/j.1365-2745.2005.01042.x CrossRefGoogle Scholar
  49. Nantel P, Neumann P (1992) Ecology of ectomycorrhizal–basidiomycete communities on a local vegetation gradient. Ecology 73:99–117 doi:10.2307/1938724 CrossRefGoogle Scholar
  50. Nara K (2006a) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198 doi:10.1111/j.1469-8137.2006.01744.x PubMedCrossRefGoogle Scholar
  51. Nara K (2006b) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178 doi:10.1111/j.1469-8137.2005.01545.x PubMedCrossRefGoogle Scholar
  52. Newton AC, Haigh JM (1998) Diversity of ectomycorrhizal fungi in Britain: a test of the species–area relationship, and the role of host specificity. New Phytol 138:619–627 doi:10.1046/j.1469-8137.1998.00143.x CrossRefGoogle Scholar
  53. Nilsson MC, Hogberg P, Zackrisson O, Fengyou W (1993) Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus sylvestris. Can J Bot 71:620–628Google Scholar
  54. Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95:83–95 doi:10.1111/j.1469-8137.1983.tb03471.x CrossRefGoogle Scholar
  55. Richard F, Millot S, Gardes M, Selosse MA (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023 doi:10.1111/j.1469-8137.2005.01382.x PubMedCrossRefGoogle Scholar
  56. Seager R, Ting MF, Held IM, Kushnir Y, Lu J, Vecchi G et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184 doi:10.1126/science.1139601 PubMedCrossRefGoogle Scholar
  57. Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function and importance. Can J Bot 82:1140–1165 doi:10.1139/b04-116 CrossRefGoogle Scholar
  58. Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582 doi:10.1038/41557 CrossRefGoogle Scholar
  59. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, LondonGoogle Scholar
  60. Smith JE, McKay D, Niwa CG, Thies WG, Brenner G, Spatafora JW (2004) Short-term effects of seasonal prescribed burning on the ectomycorrhizal fungal community and fine root biomass in ponderosa pine stands in the Blue Mountains of Oregon. Can J For Res 34:2477–2491 doi:10.1139/x04-124 CrossRefGoogle Scholar
  61. Swaty RL, Gehring CA, van Ert M, Theimer TC, Keim P, Whitham TG (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139:733–739 doi:10.1046/j.1469-8137.1998.00234.x CrossRefGoogle Scholar
  62. Swaty RL, Deckert RJ, Whitham TG, Gehring CA (2004) Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85:1072–1084 doi:10.1890/03-0224 CrossRefGoogle Scholar
  63. Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850 doi:10.1046/j.1365-294x.1999.00773.x PubMedCrossRefGoogle Scholar
  64. Urcelay C, Bret-Harte MS, Díaz S, Chapin FS (2003) Mycorrhizal colonization mediated by species interactions in arctic tundra. Oecologia 137:399–404 doi:10.1007/s00442-003-1349-6 PubMedCrossRefGoogle Scholar
  65. West NE (1999) Distribution, composition, and classification of current juniper–pinon woodlands and savannas across western North America. In: Monsen SB, Stevens R (eds) Ecology and management of pinon–juniper communities within the interior West. USDA, Forest Service, Rocky Mountain Research Station, Ogden, UT, pp 20–23Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Biological Sciences and the Merriam-Powell Center for Environmental ResearchNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations