, Volume 18, Issue 6–7, pp 287–296 | Cite as

Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress

  • Min Sheng
  • Ming Tang
  • Hui Chen
  • Baowei Yang
  • Fengfeng Zhang
  • Yanhui Huang
Original Paper


The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO2 concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv′/Fm′), the actual quantum yield in the light-adapted steady state (ϕPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN′, kP, and kP′). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.


Arbuscular mycorrhiza Chlorophyll fluorescence Gas exchange Salt stress Water status Zea 



The study was supported by the Key Project of the National Natural Science Foundation of China (30630054, 30730073) and the Program for Changjiang Scholars and Innovative Research Team in the University of China (IRT0748).

We are indebted to Hamel Chantal, Ph.D., from Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, for her assistance and comments in the preparation of this article.


  1. Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nutr 24:1311–1323 doi: 10.1081/PLN-100106983 CrossRefGoogle Scholar
  2. Araus JL, Amaro T, Voltas J, Nakkoul H, Nachit MM (1998) Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Res 55:209–223 doi: 10.1016/S0378-4290(97)00079-8 CrossRefGoogle Scholar
  3. Asghari H, Marschner P, Smith S, Smith F (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256 doi: 10.1007/s11104-004-7942-6 CrossRefGoogle Scholar
  4. Augé RM, Foster JG, Loescher WH, Stodola AW (1992) Symplastic sugar and free amino acid molality of Rosa roots with regard to mycorrhizal colonization and drought. Symbiosis 12:1–17Google Scholar
  5. Bao SD (2000) Soil agricultural chemistry analysis, 3rd edn. Agriculture, BeijingGoogle Scholar
  6. Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215 doi: 10.1111/j.1469-8137.1990.tb00392.x CrossRefGoogle Scholar
  7. Bolhar-Nordenkampf HR, Long SP, Baker NR, öquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514 doi: 10.2307/2389624 CrossRefGoogle Scholar
  8. Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281 doi: 10.1023/A:1010564013601 CrossRefGoogle Scholar
  9. Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509 doi: 10.1007/s00374-007-0232-8 CrossRefGoogle Scholar
  10. Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626 doi: 10.1146/annurev.pp.43.060192.003123 CrossRefGoogle Scholar
  11. Feng G, Zhang FS (2003) Effect of arbuscular mycorrhizal fungi on salinity tolerance of cotton. Chin J Ecol-Agriculture 11:21–24Google Scholar
  12. Feng G, Li XL, Zhang FS, Li SX (2000a) Effect of AM fungi on water and nutrition status of corn plants under salt stress. Chin J Appl Ecol 11:595–598Google Scholar
  13. Feng G, Li XL, Zhang FS, Li SX (2000b) Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment. J Plant Resour Environ 9:22–26Google Scholar
  14. Feng YL, Feng ZL, Cao KF (2001) The protection against photodamage in Amomum villosum Lour. Acta Phytophysiologica Sinica 27:483–488Google Scholar
  15. Figueroa ME, Fernández-Baco L, Luque T, Davy AJ (1997) Chlorophyll fluorescence, stress and survival in populations of Mediterranean grassland species. J Veg Sci 8:881–888 doi: 10.2307/3237033 CrossRefGoogle Scholar
  16. Gao JF (2000) Techniques of plant physiology. World Publishing Corporation, Xi’anGoogle Scholar
  17. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500 doi: 10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  18. Giri B, Mukerji K (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312 doi: 10.1007/s00572-003-0274-1 PubMedCrossRefGoogle Scholar
  19. Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760 doi: 10.1007/s00248-007-9239-9 PubMedCrossRefGoogle Scholar
  20. Havaux M, Strasser RJ, Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27:41–55 doi: 10.1007/BF00029975 CrossRefGoogle Scholar
  21. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53 doi: 10.1007/s00248-007-9249-7 PubMedCrossRefGoogle Scholar
  22. Jiang XY, Huang Y (2003) Mechanism of contribution of mycorrhizal fungi to plant saline–alkali tolerance. Ecol Environ 12:353–356Google Scholar
  23. Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (1998) Response of tomatoes, a crop of indeterminate growth, to soil salinity. Agric Water Manage 38:59–68 doi: 10.1016/S0378-3774(98)00051-1 CrossRefGoogle Scholar
  24. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349 doi: 10.1146/annurev.pp.42.060191.001525 CrossRefGoogle Scholar
  25. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668 doi: 10.1093/jexbot/51.345.659 PubMedCrossRefGoogle Scholar
  26. Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137 doi: 10.1081/PLN-120016500 CrossRefGoogle Scholar
  27. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250 doi: 10.1046/j.0016-8025.2001.00808.x PubMedCrossRefGoogle Scholar
  28. Munns R, Cramer GR, Ball MC (1999) Interactions between rising CO2, soil salinity and plant growth. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic, London, pp 139–167CrossRefGoogle Scholar
  29. Paillotin G (1976) Movement of excitations in the photosynthesis domains of photosystem II. J Theor Biol 58:237–252 doi: 10.1016/0022-5193(76)90150-8 CrossRefGoogle Scholar
  30. Phillings JM, Hayman DS (1970) Improved procedure forclearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  31. Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44 doi: 10.1146/annurev.pp.35.060184.000311 CrossRefGoogle Scholar
  32. Rabie GH (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230 doi: 10.1007/s00572-004-0345-y PubMedCrossRefGoogle Scholar
  33. Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222Google Scholar
  34. Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31:313–318 doi: 10.1016/0098-8472(91)90055-S CrossRefGoogle Scholar
  35. Rozema J, Arp W, van Diggelen J, van Esbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:457–467Google Scholar
  36. Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478 doi: 10.1111/j.1399-3054.1995.tb00865.x CrossRefGoogle Scholar
  37. Ruiz-Lozano JM, Azcón R, Gómez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772 doi: 10.1111/j.1399-3054.1996.tb06683.x CrossRefGoogle Scholar
  38. Sannazzaro AI, Oscar R, Edgardo A, Ana M (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287 doi: 10.1007/s11104-006-9015-5 CrossRefGoogle Scholar
  39. Shi LX, Guo JX (2006) Changes in photosynthetic and growth characteristics of Leymus chinensis community along the retrogression on the Songnen grassland in northeastern China. Photosynthetica 44:542–547 doi: 10.1007/s11099-006-0068-8 CrossRefGoogle Scholar
  40. Shi DC, Li YM, Yang GH, Li YD, Zhao KF (2002) A simulation of salt and alkali mixed ecological conditions and analysis of their stress factors in the seedlings of Aneurolepidium chinense. Acta Ecol Sin 22:1323–1332Google Scholar
  41. van Hoorn JW, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manage 51:87–98 doi: 10.1016/S0378-3774(01)00114-7 CrossRefGoogle Scholar
  42. Wang FY, Liu RJ (2001) A preliminary survey of arbuscular mycorrhizal fungi in saline alkaline soil of the Yellow river delta. Biodivers Sci 9:389–392Google Scholar
  43. Yano-Melo AM, Saggin OJ, Costa ML (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348 doi: 10.1016/S0167-8809(02)00044-0 CrossRefGoogle Scholar
  44. Zandavalli RB, Dillenburg LR, de Souza PVD (2004) Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl Soil Ecol 25:245–255 doi: 10.1016/j.apsoil.2003.09.009 CrossRefGoogle Scholar
  45. Zhao KF, Li FZ (1999) Halophytes in china. Science Press, BeijingGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Min Sheng
    • 1
  • Ming Tang
    • 2
  • Hui Chen
    • 2
  • Baowei Yang
    • 3
  • Fengfeng Zhang
    • 2
  • Yanhui Huang
    • 1
  1. 1.College of Life ScienceNorthwest A&F UniversityYanglingChina
  2. 2.College of ForestryNorthwest A&F UniversityYanglingChina
  3. 3.College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina

Personalised recommendations