, Volume 17, Issue 6, pp 475–486 | Cite as

Further advances in orchid mycorrhizal research

  • John D. W. DearnaleyEmail author


Orchid mycorrhizas are mutualistic interactions between fungi and members of the Orchidaceae, the world’s largest plant family. The majority of the world’s orchids are photosynthetic, a small number of species are myco-heterotrophic throughout their lifetime, and recent research indicates a third mode (mixotrophy) whereby green orchids supplement their photosynthetically fixed carbon with carbon derived from their mycorrhizal fungus. Molecular identification studies of orchid-associated fungi indicate a wide range of fungi might be orchid mycobionts, show common fungal taxa across the globe and support the view that some orchids have specific fungal interactions. Confirmation of mycorrhizal status requires isolation of the fungi and restoration of functional mycorrhizas. New methods may now be used to store orchid-associated fungi and store and germinate seed, leading to more efficient culture of orchid species. However, many orchid mycorrhizas must be synthesised before conservation of these associations can be attempted in the field. Further gene expression studies of orchid mycorrhizas are needed to better understand the establishment and maintenance of the interaction. These data will add to efforts to conserve this diverse and valuable association.


Orchid mycorrhizas Mixotrophy Myco-heterotrophy Rhizoctonia Russulaceae 



I would like to thank Peter McGee and Vivienne Gianinazzi-Pearson for the invitation to write this review and Duncan Cameron, Marc-Andre Selosse and Jeremy Bougoure for permission to use the images in Figs. 1a and b, 2c and d. I am indebted to two anonymous reviewers and Jerry Maroulis for comments and suggestions on the manuscript.


  1. Abadie J-C, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse M-A (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477CrossRefGoogle Scholar
  2. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827CrossRefPubMedGoogle Scholar
  3. Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytol 101:657–665CrossRefGoogle Scholar
  4. Alexander C, Alexander IJ, Hadley G (1984) Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol 97:401–411CrossRefGoogle Scholar
  5. Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509–524CrossRefPubMedGoogle Scholar
  6. Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K (2001) Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Aust J Bot 49:619–628CrossRefGoogle Scholar
  7. Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006a) New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. Aust J Bot 54:367–374CrossRefGoogle Scholar
  8. Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006b) In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Aust J Bot 54:375–381CrossRefGoogle Scholar
  9. Bayman P, Gonzalez EJ, Fumero JJ, Tremblay RL (2002) Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. J Ecol 90:1002–1008CrossRefGoogle Scholar
  10. Berch SM, Allen TR, Berbee ML (2002) Molecular detection, community structure and phylogeny of ericoid mycorrhizal fungi. Plant Soil 244:55–66CrossRefGoogle Scholar
  11. Bidartondo MI (2005) The evolution of myco-heterotrophy. New Phytol 167:335–352CrossRefPubMedGoogle Scholar
  12. Bidartondo MI, Bruns TD, Weiß M, Sergio C, Read DJ (2003) Specialised cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842CrossRefGoogle Scholar
  13. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806CrossRefGoogle Scholar
  14. Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst Biodivers 3:113–157CrossRefGoogle Scholar
  15. Boddington M, Dearnaley JDW (2007) Morphological and molecular identification of fungal endophytes from roots of Dendrobium speciosum. Proceedings of the Royal Society of Queensland. (in press)Google Scholar
  16. Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam (2007) Diversity of mycorrhizal fungi in terrestrial orchids: compatability webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61CrossRefPubMedGoogle Scholar
  17. Bougoure JJ, Dearnaley JDW (2005) The fungal endophytes of Dipodium variegatum (Orchidaceae). Australas Mycol 24:15–19Google Scholar
  18. Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460CrossRefPubMedGoogle Scholar
  19. Brundrett MC, Scade A, Batty AL, Dixon KW, Sivasithamparam K (2003) Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol Res 107:1210–1220CrossRefPubMedGoogle Scholar
  20. Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416CrossRefPubMedGoogle Scholar
  21. Cameron DD, Johnson I, Leake JR, Read DJ (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834CrossRefGoogle Scholar
  22. Claridge AW, May TW (1994) Mycophagy among Australian mammals. Aust J Ecol 19:251–275CrossRefGoogle Scholar
  23. Dearnaley JDW (2006) The fungal endophytes of Erythrorchis cassythoides—is this orchid saprophytic or parasitic? Australas Mycol 25:51–57Google Scholar
  24. Dearnaley JDW, Le Brocque AF (2006) Molecular identification of the primary root fungal endophytes of Dipodium hamiltonianum (Yellow hyacinth orchid). Aust J Bot 54:487–491CrossRefGoogle Scholar
  25. Dearnaley JDW, McGee PA (1996) An intact microtubule cytoskeleton is not necessary for interfacial matrix formation in orchid mycorrhizas. Mycorrhiza 6:175–180CrossRefGoogle Scholar
  26. Diez JM (2007) Hierachical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. J Ecol 95:159–170CrossRefGoogle Scholar
  27. Duplessis S, Courty P-E, Tagu D, Martin F (2005). Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611CrossRefPubMedGoogle Scholar
  28. Frettinger P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmuller R, Martin F, Buscot F (2007) Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Pilodema croceum. Planta 225:331–340CrossRefPubMedGoogle Scholar
  29. Feuerherdt L, Petit S, Jusaitis M (2005) Distribution of mycorrhizal fungus associated with the endangered pink-lipped spider orchid (Arachnorchis (syn. Caladenia) behrii) at Warren Conservation Park in South Australia. NZ J Bot 43:367–371CrossRefGoogle Scholar
  30. Findlay RD (2005) Mycorrhizal symbiosis: myths, misconceptions, new perspectives and future research priorities. Mycologist 19:90–95Google Scholar
  31. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223CrossRefGoogle Scholar
  32. Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504CrossRefPubMedGoogle Scholar
  33. Glen M, Tommerup IC, Bougher NL, O’Brien PA (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247CrossRefPubMedGoogle Scholar
  34. Gonzalez D, Cubeta MA, Vilgalys R (2006) Phylogenetic utility of indels within ribosomal DNA and β-tubulin sequences from fungi in the Rhizoctonia solani species complex. Mol Phylogenet Evol 40:459–470CrossRefPubMedGoogle Scholar
  35. Griesbach RJ (2002) Development of Phalaenopsis orchids for the mass-market. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS, Alexandria, USAGoogle Scholar
  36. Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A 102:8066–8070CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hadley G, Purves S (1974) Movement of 14Carbon from host to fungus in orchid mycorrhiza. New Phytol 73:475–482CrossRefGoogle Scholar
  38. Hadley G, Williamson B (1972) Features of mycorrhizal infection in some Malayan orchids. New Phytol 71:1111–1118CrossRefGoogle Scholar
  39. Harrison MJ (1996) A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbsucular (VA) mycorrhizal associations. Plant J 9:491–503CrossRefPubMedGoogle Scholar
  40. Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196CrossRefPubMedGoogle Scholar
  41. Huynh TT, McLean CB, Coates F, Lawrie AC (2004) Effect of developmental stage and peloton morphology on success in isolation of mycorrhizal fungi in Caladenia formosa (Orchidaceae). Aust J Bot 52:231–241CrossRefGoogle Scholar
  42. Illyes Z, Rudnoy S, Bratek Z (2005) Aspects of in situ, in vitro germination and mycorrhizal partners of Liparis loeselii. Acta Biol Szeged 49:137–139Google Scholar
  43. Irwin MJ, Bougoure JJ, Dearnaley JDW (2007) Pterostylis nutans (Orchidaceae) has a specific association with two Ceratobasidium root associated fungi across its range in Eastern Australia. Mycoscience (in press)Google Scholar
  44. Jones DL (2006) A complete guide to native orchids of Australia including the Island Territories. Reed New Holland, SydneyGoogle Scholar
  45. Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653CrossRefPubMedGoogle Scholar
  46. Kristiansen KA, Taylor DL, Kjoller R, Rasmussen HN, Rosendahl S (2001) Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Mol Ecol 10:2089–2093CrossRefPubMedGoogle Scholar
  47. Kristiansen KA, Freudenstein JV, Rasmussen FN, Rasmussen HN (2004) Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol Phylogenet Evol 33:251–258CrossRefPubMedGoogle Scholar
  48. Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  49. Leake JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the “saprophytic” plant myth. Mycologist 19:113–122Google Scholar
  50. Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049CrossRefPubMedGoogle Scholar
  51. Masuhara G, Katsuya K (1994) In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames. var. amoena (M. Biebertsien) Hara (Orchidaceae). New Phytol 127:711–718CrossRefGoogle Scholar
  52. McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438CrossRefGoogle Scholar
  53. McCormick MK, Whigham DF, Sloan D, O’Malley K, Hodkinson B (2006) Orchid-fungus fidelity: a marriage meant to last? Ecology 87:903–911CrossRefPubMedGoogle Scholar
  54. McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548CrossRefGoogle Scholar
  55. McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247CrossRefGoogle Scholar
  56. Midgley DJ, Jordan LA, Saleeba JA, McGee PA (2006) Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza 16:175–182CrossRefPubMedGoogle Scholar
  57. Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858CrossRefGoogle Scholar
  58. Otero JT, Ackerman JD, Bayman P (2004) Diversity in mycorrhizal preferences between two tropical orchids. Mol Ecol 13:2393–2404CrossRefPubMedGoogle Scholar
  59. Otero JT, Bayman P, Ackerman JD (2005) Variation in mycorrhizal performance in the epiphytic orchid Tolumnia variegata in vitro: the potential for natural selection. Evol Ecol 19:29–43CrossRefGoogle Scholar
  60. Pereira OL, Rollemberg CL, Borges AC, Matsuoka K, Kasuya MCM (2003) Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience 44:153–155CrossRefGoogle Scholar
  61. Pereira OL, Kasuya MCM, Borges AC, de Araujo EF (2005) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65CrossRefGoogle Scholar
  62. Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163CrossRefGoogle Scholar
  63. Sangtiean T, Schmidt S (2002) Growth of subtropical ECM fungi with different nitrogen sources using a new floating culture technique. Mycol Res 106:74–85CrossRefGoogle Scholar
  64. Scade A, Brundrett MC, Batty AL, Dixon KW, Sivasithamparam K (2006) Survival of transplanted terrestrial orchid seedlings in urban bushland habitats with high or low weed cover. Aust J Bot 54:383–389CrossRefGoogle Scholar
  65. Selosse M-A, Weiß M, Jany J-L, Tillier A (2002a) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844CrossRefPubMedGoogle Scholar
  66. Selosse M-A, Bauer R, Moyersoen B (2002b) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195CrossRefGoogle Scholar
  67. Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426CrossRefPubMedGoogle Scholar
  68. Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628CrossRefPubMedGoogle Scholar
  69. Shan XC, Liew ECY, Weatherhead MA, Hodgkiss IJ (2002) Characterisation and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia 94:230–239CrossRefPubMedGoogle Scholar
  70. Sharma J, Zettler LW, Van Sambeek JW (2003) A survey of mycobionts of federally threatened Platanthera pracelara (Orchidaceae). Symbiosis 34:145–155Google Scholar
  71. Sharon M, Kuninaga S, Hyakumachi M, Sneh B (2006) The advancing identification and classification of Rhizoctonia spp. Using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience 47:299–316CrossRefGoogle Scholar
  72. Shefferson RP, Weiß M, Kull T, Taylor DL (2005). High specificity generally characterises mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626CrossRefPubMedGoogle Scholar
  73. Shimura H, Koda Y (2005) Enhanced symbiotic seed germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol Plant 123:281–287CrossRefGoogle Scholar
  74. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  75. Stewart SL, Kane ME (2006) Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tissue Organ Cult 86:159–167CrossRefGoogle Scholar
  76. Suarez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270CrossRefPubMedGoogle Scholar
  77. Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515CrossRefPubMedPubMedCentralGoogle Scholar
  78. Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732CrossRefGoogle Scholar
  79. Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179CrossRefPubMedGoogle Scholar
  80. Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–143CrossRefGoogle Scholar
  81. Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host specificity of certain achlorophyllous plants. New Phytol 160:391–401CrossRefGoogle Scholar
  82. Warcup JH (1971) Specificity of mycorrhizal association in some Australian terrestrial orchids. New Phytol 70:41–46CrossRefGoogle Scholar
  83. Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381CrossRefGoogle Scholar
  84. Warcup JH (1985) Rhizanthella gardneri (Orchidaceae), its Rhizoctonia endophyte and close association with Melaleuca uncinata (Myrtaceae) in Western Australia. New Phytol 99:273–280CrossRefGoogle Scholar
  85. Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231CrossRefGoogle Scholar
  86. Warcup JH (1991) The Rhizoctonia endophytes of Rhizanthella (Orchidaceae). Mycol Res 95:656–659CrossRefGoogle Scholar
  87. Watkinson JI, Welbaum GE (2003) Characterization of gene expression in roots of Cypripedium parviflorum var. pubescens incubated with a mycorrhizal fungus. Acta Hortic 624:463–470CrossRefGoogle Scholar
  88. Weiß M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomyctes with a broad mycorrhizal potential. Mycol Res 108:1003–1010CrossRefPubMedGoogle Scholar
  89. Whitridge H, Southworth D. (2005) Mycorrhizal symbionts of the terrestrial orchid Cypripedium fasciculatum. Selbyana 26:328–334Google Scholar
  90. Xu JT, Mu C (1990) The relation between growth of Gastrodia elata protocorms and fungi. Acta Bot Sin 32:26–31. Cited in Rasmussen (2002)Google Scholar
  91. Yagame T, Yamato M, Masahiro M, Suzuki A, Iwase K (2007) Developmental processes of achlorophyllous orchid, Epipogium roseum: from seed germination to flowering under symbiotic cultivation with mycorrhizal fungus. J Plant Res 120:229–236CrossRefPubMedGoogle Scholar
  92. Yamato M, Yagame T, Suzuki A, Iwase K (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77CrossRefGoogle Scholar
  93. Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150CrossRefPubMedGoogle Scholar
  94. Zelmer CD, Cuthbertson L, Currah RS (1996) Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience 37:439–448CrossRefGoogle Scholar
  95. Zettler LW, Piskin KA, Stewart SL, Hartsock JJ, Bowles ML, Bell TJ (2005) Protocorm mycobionts of the federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindley, and a technique to prompt leaf elongation in seedlings. Stud Mycol 53:163–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Faculty of Sciences and Australian Centre for Sustainable CatchmentsThe University of Southern QueenslandToowoombaAustralia

Personalised recommendations